1
|
Arunkirirote P, Suwalak P, Chaisan N, Tummatorn J, Ruchirawat S, Thongsornkleeb C. Electron Donor-Acceptor Complex-Enabled Autoinductive Conversion of Acylnitromethanes to Acylnitrile Oxides in a Photochemical Machetti-De Sarlo Reaction: Synthesis of 5-Substituted 3-Acylisoxazoles. Org Lett 2024; 26:9173-9178. [PMID: 39213530 DOI: 10.1021/acs.orglett.4c02708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A photochemical Machetti-De Sarlo reaction has been developed for preparing 5-substituted 3-acylisoxazoles from acylnitromethanes and terminal alkynes. This photochemical protocol utilizes an innovative electron donor-acceptor complex, generated in situ from acylnitromethanes, catalytic LiOtBu, and 1,1,1,3,3,3-hexafluoro-2-propanol, as a photosensitizer to promote rapid conversion with a broad substrate scope in up to 80% efficiency. A sigmoidal autoinductive kinetic profile is revealed, demonstrating the novel and unique dual catalysis in the first photochemical approach of this reaction.
Collapse
Affiliation(s)
- Piyaporn Arunkirirote
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Pornteera Suwalak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Nattawadee Chaisan
- Program on Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Jumreang Tummatorn
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Program on Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Program on Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| | - Charnsak Thongsornkleeb
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Program on Chemical Sciences, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
2
|
Newar UD, Kumar S, Borah A, Borra S, Manna P, Gokulnath S, Maurya RA. Access to Isoxazoles via Photo-oxygenation of Furan Tethered α-Azidoketones. J Org Chem 2024; 89:12378-12386. [PMID: 39171928 DOI: 10.1021/acs.joc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Photocatalyst-free visible light-enabled direct oxygenation of furan-tethered α-azidoketones was studied. The reaction yielded various products depending on the substituents, with isoxazoles forming as the major products. The findings suggest that singlet oxygen was generated during the reaction and reacted with α-azidoketones in a [4 + 2] fashion to yield endoperoxides, which rearranged in multiple ways to generate isoxazoles. Some of the synthesized isoxazoles were evaluated as α-glucosidase inhibitors, and three of them 5bi, 5bj, and 5bl exhibited good activity with IC50 values of 454.57 ± 29.34, 147.84 ± 2.28, and 272.58 ± 42.06 μM, respectively, when compared with the standard drug acarbose (IC50 = 1224.33 ± 126.72 μM).
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Saurabh Kumar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
| | - Anupriya Borah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Satheesh Borra
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
3
|
Taggart EL, Wolff EJ, Yanar P, Blobe JP, Shugrue CR. Development of an oxazole-based cleavable linker for peptides. Bioorg Med Chem 2024; 102:117663. [PMID: 38457910 DOI: 10.1016/j.bmc.2024.117663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
We report the development of a new oxazole-based cleavable linker to release peptides from attached cargo. Oxazoles are stable to most reaction conditions, yet they can be rapidly cleaved in the presence of single-electron oxidants like cerium ammonium nitrate (CAN). An oxazole linker could be synthesized and attached to peptides through standard solid-phase peptide coupling reactions. Cleavage of these peptide-oxazole conjugates is demonstrated on a broad scope of peptides containing various natural and unnatural amino acids. These results represent the first example of a peptide-based linker that is cleaved through single-electron oxidation. The oxazole is also demonstrated to be a suitable linker for both the release of a peptide from a conjugated small molecule and the orthogonal release of cargo from a peptide containing multiple cleavable linkers. Oxazole linkers could serve as a promising tool for peptide screening platforms such as peptide-encoded libraries.
Collapse
Affiliation(s)
- Elizabeth L Taggart
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Evan J Wolff
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Pamira Yanar
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - John P Blobe
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Christopher R Shugrue
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States.
| |
Collapse
|
4
|
Pal S, Das D, Bhunia S. p-Toluenesulfonic acid-promoted organic transformations for the generation of molecular complexity. Org Biomol Chem 2024; 22:1527-1579. [PMID: 38275082 DOI: 10.1039/d3ob01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Since the beginning of this century, p-toluenesulfonic acid (p-TSA) catalysed organic transformations have been an active area of research for developing efficient synthetic methodologies. Often, catalysis using p-TSA is associated with many advantages, such as operational simplicity, high selectivity, excellent yields, and ease of product isolation, which make organic synthesis convenient and versatile. Notably, p-TSA is a non-toxic, commercially available, inexpensive solid organic compound that is soluble in water, alcohols, and other polar organic solvents. p-TSA is a strong acid compared to many protic or mineral acids and its high acidity helps activate different organic functional groups. p-TSA-promoted conversions are fast, have a high atom and pot economy, and feature a multiple bond-forming index. Therefore, the utilization of p-TSA enables the synthesis of many important structural scaffolds without any hazardous metals, making it desirable in numerous applications of sustainable and green chemistry. Recently, this emerging area of research has become one of the pillars of synthetic organic chemistry to synthesise biologically relevant, complex carbocycles and heterocycles. This study provides a comprehensive summary of methods, applications, and mechanistic insights into p-TSA-catalysed organic transformations, covering the literature reports that have appeared since 2012.
Collapse
Affiliation(s)
- Sanchari Pal
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Debjit Das
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi, Jharkhand, India.
| |
Collapse
|
5
|
Sathish E, Ansari AJ, Joshi G, Pandit A, Shukla M, Kumari N, Sharon A, Verma VP, Sawant DM. Pd-Catalysed [3 + 2]-cycloaddition towards the generation of bioactive bis-heterocycles/identification of COX-2 inhibitors via in silico analysis. Org Biomol Chem 2022; 20:4746-4752. [PMID: 35612901 DOI: 10.1039/d2ob00467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current research, we envisaged the synthesis of bis-heterocycles containing the dihydroisoxazole ring by [3 + 2] cycloaddition of VECs (vinyl ethylene carbonates) and nitrile oxides, assisted by a Pd catalyst. Herein we explored hydroximoyl chlorides as versatile precursors for the in situ generation of nitrile oxides that were exploited to achieve the cycloaddition reaction on a vinyl group of VECs to generate bis-heterocycles. In silico-based studies of bis-heterocycles on the cyclooxygenase (COX) enzyme displayed selective COX-2 inhibition.
Collapse
Affiliation(s)
- Elagandhula Sathish
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| | - Arshad J Ansari
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India. .,Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, SAS Nagar-140306, Punjab, India
| | - Gaurav Joshi
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, India
| | - Akansha Pandit
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai-304022, Rajasthan, India.
| | - Neha Kumari
- Department of Chemistry, Birla Institution of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institution of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai-304022, Rajasthan, India.
| | - Devesh M Sawant
- School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, NH-8, Ajmer-305801, Rajasthan, India.
| |
Collapse
|
6
|
Sukanya SH, Venkatesh T, Aditya Rao SJ, Pandith A. An efficient p-TSA catalyzed synthesis of some new substituted-(5-hydroxy-3-phenylisoxazol-4-yl)-1,3-dimethyl-1H-chromeno[2,3-d]pyrimidine-2,4(3H,5H)-dione/3,3-dimethyl-2H-xanthen-1(9H)-one scaffolds and evaluation of their pharmacological and computational investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Vadivelu M, Raheem AA, Raj JP, Elangovan J, Karthikeyan K, Praveen C. Mechanochemical Access to Functional Clickates with Nitro-Retentive Selectivity via Organocatalyzed Oxidative Azide-Olefin Cycloaddition. Org Lett 2022; 24:2798-2803. [DOI: 10.1021/acs.orglett.2c00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Murugan Vadivelu
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Abbasriyaludeen Abdul Raheem
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - John Paul Raj
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Jebamalai Elangovan
- Department of Chemistry, Rajah Serfoji Government College, Thanjavur 613005, India
| | - Kesavan Karthikeyan
- Department of Chemistry, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| |
Collapse
|
8
|
Hernandez R RA, Burchell-Reyes K, Braga APCA, Lopez JK, Forgione P. Solvent-free synthesis of 3,5-isoxazoles via 1,3-dipolar cycloaddition of terminal alkynes and hydroxyimidoyl chlorides over Cu/Al 2O 3 surface under ball-milling conditions. RSC Adv 2022; 12:6396-6402. [PMID: 35424611 PMCID: PMC8981965 DOI: 10.1039/d1ra08443g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/10/2022] [Indexed: 01/20/2023] Open
Abstract
Scalable, solvent-free synthesis of 3,5-isoxazoles under ball-milling conditions has been developed. The proposed methodology allows the synthesis of 3,5-isoxazoles in moderate to excellent yields from terminal alkynes and hydroxyimidoyl chlorides, using a recyclable Cu/Al2O3 nanocomposite catalyst. Furthermore, the proposed conditions are reproducible to a 1.0-gram scale without further milling time variations. A practical and scalable mechanochemical 1,3-dipolar cycloaddition between hydroxyimidoyl chlorides and terminal alkynes catalyzed by Cu/Al2O3 allows a quick access to 3,5-isoxazole derivatives.![]()
Collapse
Affiliation(s)
- Rafael A Hernandez R
- Department of Chemistry and Biochemistry, Concordia University 7141 rue Sherbrooke O. Montréal QC Canada H4B 1R6
| | - Kelly Burchell-Reyes
- Department of Chemistry and Biochemistry, Concordia University 7141 rue Sherbrooke O. Montréal QC Canada H4B 1R6
| | - Arthur P C A Braga
- Department of Chemistry and Biochemistry, Concordia University 7141 rue Sherbrooke O. Montréal QC Canada H4B 1R6
| | - Jennifer Keough Lopez
- Department of Chemistry and Biochemistry, Concordia University 7141 rue Sherbrooke O. Montréal QC Canada H4B 1R6
| | - Pat Forgione
- Department of Chemistry and Biochemistry, Concordia University 7141 rue Sherbrooke O. Montréal QC Canada H4B 1R6 .,Centre for Green Chemistry and Catalysis, McGill University 801 rue Sherbrooke O. Montréal QC Canada H3A 0B8
| |
Collapse
|
9
|
Jiang P, Wang Y, Chen D, Zheng Y, Huang S. Synthesis of 3‐Acyl‐Isoxazoles
via
Radical 5‐
endo trig
Cyclization of β,γ‐Unsaturated Ketones with NaNO
2. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yaming Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
10
|
Bando S, Ooba S, Miura K, Nakajima N, Hamada M, Takata T, Koyama Y. Steric and Electronic Effects on Thermal Stability of Nitrile N-Oxide: a Case Study of Naphthalen-2-ol Derived Substrates. CHEM LETT 2021. [DOI: 10.1246/cl.210427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shiho Bando
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Souma Ooba
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kaori Miura
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Yasuhito Koyama
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
11
|
Kobychev VB, Pradedova AG, Trofimov BA. A one-pot assembly of Δ2-isoxazolines from ketones, aryl acetylenes and hydroxylamine: Revisiting the mechanism in terms of quantum chemistry. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Chalyk BA, Khutorianskyi AV, Vashchenko BV, Danyleiko K, Grynyova A, Osipova AO, Kozytskiy A, Syniuchenko D, Tsymbaliuk A, Gavrilenko KS, Biitseva AV, Volochnyuk DM, Komarov IV, Grygorenko OO. Reductive Recyclization of sp 3-Enriched Functionalized Isoxazolines into α-Hydroxy Lactams. J Org Chem 2021; 87:1001-1018. [PMID: 34843235 DOI: 10.1021/acs.joc.1c02301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthesis (up to a 200 g scale) of 3-hydroxypyrrolidin-2-ones bearing alkyl substituents or functional groups at the C-5 position is described. The reaction sequence started from 1,3-dipolar cycloaddition of in situ generated nitrile oxides with (meth-)acrylates into 3-substituted isoxazoline-5-carboxylates. The catalytic hydrogenolysis of the isoxazoline N-O bond was optimal upon using H2 (1 atm) at rt, with the following order of the catalyst activity: Pd-C > Pd(OH)2-C > Pt-C. The reactions with Pt-C were more selective for the synthesis of pyrrolidones, while Pd-C provided the fastest conversion rates. The stirring efficiency had a positive impact on conversion rather than elevated temperatures (up to 40 °C) or pressure (up to 50 atm). The diastereoselectivity was governed mainly by steric factors, with a dr of 1:1 to 3:1 (cis- and trans-isomers could be separated). Higher homologues (isoxazolinylacetates and -propanoates) were suitable for the synthesis of 6- or 7-substituted 4-hydroxypiperidones and 5-hydroxyazepanones, respectively. The proposed methods are tolerant to functional groups, including CF3 (but not CHF2 or CH2Cl), ester, and most N-Boc-protected amines. The utility of hydroxyl groups in lactams was shown by functional group transformations. Hydrogenolysis of C(5)-functionalized isoxazolines, bearing trimethylsilyl, phosphonate, or sulfone groups, was also studied to demonstrate limitations.
Collapse
Affiliation(s)
- Bohdan A Chalyk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine
| | - Andrii V Khutorianskyi
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kyrylo Danyleiko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Anastasiia Grynyova
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine.,Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine
| | - Anastasiia O Osipova
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy Kozytskiy
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,L. V. Pisarzhevskii Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Nauky Avenue, 31, Kyiv 03028, Ukraine
| | - Darya Syniuchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Anton Tsymbaliuk
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Konstantin S Gavrilenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Angelina V Biitseva
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Dmitriy M Volochnyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02094, Ukraine.,Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Igor V Komarov
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| |
Collapse
|
13
|
Das S, Chanda K. An overview of metal-free synthetic routes to isoxazoles: the privileged scaffold. RSC Adv 2021; 11:32680-32705. [PMID: 35493554 PMCID: PMC9042182 DOI: 10.1039/d1ra04624a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022] Open
Abstract
In the field of drug discovery, isoxazole is a five-membered heterocyclic moiety commonly found in many commercially available drugs. In view of their enormous significance, it is always imperative to unleash new eco-friendly synthetic strategies. Among various novel synthetic techniques in use for isoxazole synthesis, most synthetic methods employ Cu(i) or Ru(ii) as catalysts for (3 + 2) cycloaddition reaction. The particular disadvantages associated with metal-catalyzed reactions are high costs, low abundance, toxicity, a significant generation of waste, and difficulty to separate from the reaction mixtures. In view of these drawbacks, it is always imperative to develop alternate metal-free synthetic routes. This review article highlights a comprehensive overview on the potential application of metal-free synthetic routes for the synthesis of isoxazoles with significant biological interests.
Collapse
Affiliation(s)
- Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 India
| |
Collapse
|
14
|
Vadivelu M, Sampath S, Muthu K, Karthikeyan K, Praveen C. Mechanochemistry Enabled Construction of Isoxazole Skeleton
via
CuO Nanoparticles Catalyzed Intermolecular Dehydrohalogenative Annulation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Murugan Vadivelu
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur, Chennai 600048 Tamil Nadu India
| | - Sugirdha Sampath
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur, Chennai 600048 Tamil Nadu India
- Department of Metallurgical & Materials Engineering Indian Institute of Technology-Madras (IITM) Chennai 600036 Tamil Nadu India
| | - Kesavan Muthu
- Interdisplinary Institute of Indian System of Medicine (IIISM) SRM Institute of Science and Technology Kattankulathur 603203 Chengalpattu District Tamil Nadu India
| | - Kesavan Karthikeyan
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur, Chennai 600048 Tamil Nadu India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram, Karaikudi 630003 Sivagangai District Tamil Nadu India
| |
Collapse
|
15
|
Mondal S, Biswas S, Ghosh KG, Sureshkumar D. TEMPO-Mediated Selective Synthesis of Isoxazolines, 5-Hydroxy-2-isoxazolines, and Isoxazoles via Aliphatic δ-C(sp3)-H Bond Oxidation of Oximes. Chem Asian J 2021; 16:2439-2446. [PMID: 34190407 DOI: 10.1002/asia.202100572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/20/2021] [Indexed: 12/20/2022]
Abstract
Selective synthesis of three different bioactive heterocycles; isoxazolines, 5-hydroxy-2-isoxazolines and isoxazoles from the same starting material using TEMPO (2,2,6,6-Tetramethylpiperidin-1-oxyl) as a radical initiator is reported. Selectivity was achieved using different oxidants with TEMPO. The reaction goes through a 1,5-HAT (hydrogen atom transfer) process resulting in products with good yields. This strategy offers a straightforward route to three different heterocycles from oximes via radical-mediated C(sp3 )-H oxidation.
Collapse
Affiliation(s)
- Santanu Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.,Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Krishna Gopal Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
16
|
Rao MS, Hussain S. TEMPO-mediated aerobic oxidative synthesis of 2-aryl benzoxazoles via ring-opening of benzoxazoles with benzylamines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1949476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| |
Collapse
|
17
|
Praveen C. Cycloisomerization of π-Coupled Heteroatom Nucleophiles by Gold Catalysis: En Route to Regiochemically Defined Heterocycles. CHEM REC 2021; 21:1697-1737. [PMID: 34061426 DOI: 10.1002/tcr.202100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
Since the dawn of millennium, catalytic gold chemistry is at the forefront to set off diverse organic reactions via unique activation of π-bonded molecules. Within this purview, cycloisomerization of heteroatom nucleophiles linked to a π-system is one of the well recognized chemistry for the construction of numerous heterocyclic cores. Though the rudimentary aspects of this transformation are reviewed by several groups in different timeline, a holistic view on regiochemistry of such reactions went largely overlooked. Hence, this account emphasizes the gold catalyzed regioselective cycloisomerization of structurally distinctive π-connected hetero-nucleophiles leading to different heterocycles documented in the last two decades. From an application perspective, this account also highlights those methodologies which find a role in the total synthesis of natural products. Wherever appropriate, mechanistic details and contributing factors for selectivity are also discussed.
Collapse
Affiliation(s)
- Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Alagappapuram, Karaikudi, 630003, Sivagangai District, Tamil Nadu, India
| |
Collapse
|
18
|
Arya GC, Kaur K, Jaitak V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 2021; 221:113511. [PMID: 34000484 DOI: 10.1016/j.ejmech.2021.113511] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is the second most leading cause of death among women. Multiple drugs have been approved by FDA for the treatment of BC. The major drawbacks of existing drugs are the development of resistance, toxicity, selectivity problem. The other therapies like hormonal therapy, surgery, radiotherapy, and immune therapy are in use but showed many side effects like bioavailability issues, non-selectivity, pharmacokinetic-pharmacodynamic problems. Therefore, there is an urgent need to develop new moieties that are nonviolent and more effective in the treatment of cancer. Isoxazole derivatives have gain popularity in recent years due to anticancer potential with the least side effects. These derivatives act as an anticancer agent with different mechanisms like inducing apoptosis, aromatase inhibition, disturbing tubulin congregation, topoisomerase inhibition, HDAC inhibition, and ERα inhibition. In this article, we have explored the synthetic strategies, anticancer mechanism of action along with SAR studies of isoxazole derivatives.
Collapse
Affiliation(s)
- Girish Chandra Arya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghhudha, Bathinda, Pb, 151401, India.
| |
Collapse
|
19
|
Li L, Huang S, Mao K, Lv L, Li Z. Synthesis of isoxazoles via cyclization of β-fluoro enones with sodium azide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Sen' VD, Golubev VA, Shilov GV, Chernyak AV, Kurmaz VA, Luzhkov VB. Oxygen Atom Transfer in the Oxidation of Dimethyl Sulfoxide by Oxoammonium Cations. J Org Chem 2021; 86:3176-3185. [PMID: 33449678 DOI: 10.1021/acs.joc.0c02526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic oxoammonium salts and DMSO are known as important reagents for their diverse and unique reactivity. In the present work, we have studied the reaction of six- and five-membered oxoammonium salts with DMSO. The reaction includes ∼100% selective transfer of the O atom from the >N+═O group to the S atom of DMSO and structural rearrangement of the remaining cationic framework, leading to the formation of hydrolytically unstable iminium salts. The logarithms of the bimolecular rate constants k of the reaction correlated linearly with the reduction potentials E>N+═O/>N-O•, a relationship known for other electrophile-nucleophile combinations. The kinetic data and results of the DFT calculations allow for the suggestion that the studied process proceeds via the prereactive charge-transfer complex >N+═O···S (O)Me2 and its direct concerted rearrangement to the iminium salts. An alternative mechanism that includes intermediate steps with discrete nitrenium cations can be ruled out on the basis of product analysis and DFT computations. The obtained results allow a deeper understanding of the redox chemistry of a pair of nitroxide radicals-oxoammonium cations.
Collapse
Affiliation(s)
- Vasily D Sen'
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Valery A Golubev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Gennadii V Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Alexander V Chernyak
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Vladimir A Kurmaz
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Victor B Luzhkov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation.,Department of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, Moscow 119991, Russia Federation
| |
Collapse
|
21
|
Kiranmye T, Vadivelu M, Magadevan D, Sampath S, Parthasarathy K, Aman N, Karthikeyan K. Sunlight‐Assisted Photocatalytic Sustainable Synthesis of 1,4‐Disubstituted 1,2,3‐Triazoles and Benzimidazoles Using TiO
2
−Cu
2
(OH)PO
4
Under Solvent‐Free Condition. ChemistrySelect 2021. [DOI: 10.1002/slct.202004427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tayyala Kiranmye
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Murugan Vadivelu
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Deviga Magadevan
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Sugirdha Sampath
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
- Department of Metallurgical & Materials Engineering Indian Institute of Technology, Madras Chennai 600036 India
| | - Kannabiran Parthasarathy
- Animal & Mineral Origin Drug Research Laboratory (AMDRL) Siddha Central Research Institute Central Council for Research in Siddha, Arignar Anna Hospital Campus, Arumbakkam Chennai 600 106 India
| | - Noor Aman
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| | - Kesavan Karthikeyan
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai 600048 India
| |
Collapse
|
22
|
Wang L, Tao Y, Zhang N, Li S. Convenient synthesis of 4,5-unsubstituted 3-aroylisoxazoles from methyl aryl ketones and (vinylsulfonyl)benzene in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Zhang XW, He XL, Yan N, Zheng HX, Hu XG. Oxidize Amines to Nitrile Oxides: One Type of Amine Oxidation and Its Application to Directly Construct Isoxazoles and Isoxazolines. J Org Chem 2020; 85:15726-15735. [PMID: 33174420 DOI: 10.1021/acs.joc.0c02281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile oxidative heterocyclization of commercially available amines and tert-butyl nitrite with alkynes or alkenes leading to isoxazoles or isoxazolines is described. The unprecedented strategy of the oxidation of an amine directly to a nitrile oxide was used in this cyclization process. This reaction is highly efficient, regiospecific, operationally simple, mild, and tolerant of a variety of functional groups. Control experiments support a nitrile oxide intermediate mechanism for this novel class of oxidative cyclization reactions. Moreover, synthetic applications toward bioactive molecular skeletons and the late-stage modification of drugs were realized.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Xiao-Lin He
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Nan Yan
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Hong-Xing Zheng
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, China.,School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252059, China
| |
Collapse
|
24
|
Ge J, Ding Q, Long X, Liu X, Peng Y. Copper(II)-Catalyzed Domino Synthesis of 4-Benzenesulfonyl Isoxazoles from 2-Nitro-1,3-enynes, Amines, and Sodium Benzenesulfinate. J Org Chem 2020; 85:13886-13894. [PMID: 33084339 DOI: 10.1021/acs.joc.0c01964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and effective method for the synthesis of fully substituted 4-benzenesulfonyl isoxazoles through a copper(II)-catalyzed three-component reaction of 2-nitro-1,3-enynes, amines, and sodium benzenesulfinate is described. The reaction proceeds smoothly under mild conditions and provides the benzenesulfonyl isoxazoles with high chemoselectivity.
Collapse
Affiliation(s)
- Junying Ge
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.,Institute of Coordination Catalysis, Engineering Center of Jiangxi, University for Lithium Energy and Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, Jiangxi 336000, China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xujing Long
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xuan Liu
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Key Laboratory of Green Chemistry, and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
25
|
Ma Y, Chen Y, Lou C, Li Z. DABCO‐Mediated [4+1] Cycloaddition of β,β‐Dihalo Peroxides with Sodium Azide toward Isoxazoles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yangyang Ma
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Yuanjin Chen
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Chenhao Lou
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Zhiping Li
- Department of ChemistryRenmin University of China Beijing 100872 China
| |
Collapse
|