1
|
Gui QW, Ying S, Liu X, Wang J, Xiao X, Liu Z, Wang X, Shang Y, Li Q. BF 3·OEt 2-mediated transamidation of unprotected primary amides under solvent-free conditions. Org Biomol Chem 2024; 22:6605-6611. [PMID: 39087323 DOI: 10.1039/d4ob00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A BF3·OEt2-mediated transamidation between unactivated amides and amines is reported, enabling access to diverse secondary and tertiary amides under transition-metal-free and solvent-free conditions. The operationally simple procedure provides a novel manifold for converting amide-amide bonds with excellent chemoselectivity. In particular, a series of amides including challenging thioamides enable direct transamidation to products with modest to excellent yields. Meanwhile, additional experiments were conducted to elucidate the mechanism of this transformation, and a plausible mechanism was proposed based on the results and related literature.
Collapse
Affiliation(s)
- Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Shengneng Ying
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Xin Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410128, People's Republic of China
| | - Xuliang Xiao
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Zhuoliang Liu
- College of Science, National University of Defense Technology, Changsha 410128, People's Republic of China
| | - Xia Wang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Yanxue Shang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China.
| | - Qiang Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, People's Republic of China
| |
Collapse
|
2
|
Lee SE, Kim Y, Lee YH, Lim HN. C-C Bond Cleavage-Induced C- to N-Acyl Transfer for Synthesis of Amides. Org Lett 2024; 26:3646-3651. [PMID: 38656111 DOI: 10.1021/acs.orglett.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A new approach for the preparation of amides was developed using C-C bond cleavage that initiates C- to N-acyl transfer, employing activated ketones as acylation reagents and amine nucleophiles. The reaction was operational under the coupling reagent system that is commonly utilized for peptide bond formations. The method enables practical preparation of amides using linear and cyclic ketone substrates under mild conditions.
Collapse
Affiliation(s)
- Su Eun Lee
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Youngsoo Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Yong Ho Lee
- Department of Chemistry and Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
3
|
Singh V, Rajput K, Mishra A, Singh S, Srivastava V. Microwave-assisted chemoselective transamidation of secondary amides by selective N-C(O) bond cleavage under catalyst, additive and solvent-free conditions. Chem Commun (Camb) 2023; 59:14009-14012. [PMID: 37941417 DOI: 10.1039/d3cc04128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A microwave-assisted, highly chemoselective protocol has been developed for the transamidation of tert-butyloxycarbonyl (Boc) activated secondary carboxamides with amines. Under non-conventional microwave techniques, the reactions were achieved under catalyst, additive, promoter and solvent-free conditions. The transamidation of a structurally diverse set of amides and amines was accomplished in good to excellent yields. The salient features of the developed methodology include a simple operation, broad substrate scope, functional group tolerance, practicality, and the scalability.
Collapse
Affiliation(s)
- Vishal Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Khushbu Rajput
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Ankush Mishra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| | - Vandana Srivastava
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi-221005, UP, India.
| |
Collapse
|
4
|
Moon H, Lee S. Reductive cross-coupling of N-acyl pyrazole and nitroarene using tetrahydroxydiboron: synthesis of secondary amides. Org Biomol Chem 2023; 21:8329-8334. [PMID: 37795749 DOI: 10.1039/d3ob01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
We report on a new method for the synthesis of amides using acyl pyrazoles and nitroarenes under reducing conditions. It was found that acyl pyrazoles react with organo-nitro compounds in the presence of B2(OH)4, giving the corresponding amides in good yields. We demonstrated that benzoyl pyrazoles having various substituents and nitroarenes with different substituents can be used to produce a range of N-substituted benzamides. The method shows good functional group tolerance and has potential application in the synthesis of a variety of organic molecules.
Collapse
Affiliation(s)
- Hayeon Moon
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Rajendran N, Kamaraj K, Janakiraman S, Saral M, Dixneuf PH, Bheeter CB. A sustainable metal and base-free direct amidation of esters using water as a green solvent. RSC Adv 2023; 13:14958-14962. [PMID: 37200700 PMCID: PMC10186333 DOI: 10.1039/d3ra02637j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Herein, we report a simple and efficient synthetic approach for direct amidation of esters via C(acyl)-O bond cleavage without any additional reagents or catalysts, using only water as a green solvent. Subsequently, the reaction byproduct is recovered and utilized for the next phase of ester synthesis. This method emphasized metal-free, additive-free, and base-free characteristics making it a new, sustainable, and eco-friendly way to realize direct amide bond formation. In addition, the synthesis of the drug molecule diethyltoluamide and the Gram-scale synthesis of a representative amide are demonstrated.
Collapse
Affiliation(s)
- Nanthini Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Kiruthigadevi Kamaraj
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Saranya Janakiraman
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | - Mary Saral
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| | | | - Charles Beromeo Bheeter
- Department of Chemistry, School of Advanced Sciences, Vellore of Institute of Technology Vellore-632014 TamilNadu India
| |
Collapse
|
7
|
Bai J, Li S, Zhu R, Li Y, Li W. B 2(OH) 4-Mediated Reductive Transamidation of N-Acyl Benzotriazoles with Nitro Compounds En Route to Aqueous Amide Synthesis. J Org Chem 2023; 88:3714-3723. [PMID: 36888556 DOI: 10.1021/acs.joc.2c02995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
We herein developed a reductive transamidation reaction between N-acyl benzotriazoles (AcBt) and organic nitro compounds or NaNO2 under mild conditions. This protocol employed the stable and readily available B2(OH)4 as the reducing agent and H2O as the ideal solvent. N-Deuterated amides can be synthesized when conducting the reaction in D2O. A reasonable reaction mechanism involving bond metathesis between the AcBt amide and amino boric acid intermediate was proposed to explain the unique nature of AcBt.
Collapse
Affiliation(s)
- Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shangzhang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Riqian Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
8
|
Lv C, Zhao R, Wang X, Liu D, Muschin T, Sun Z, Bai C, Bao A, Bao YS. Copper-Catalyzed Transamidation of Unactivated Secondary Amides via C-H and C-N Bond Simultaneous Activations. J Org Chem 2023; 88:2140-2157. [PMID: 36701175 DOI: 10.1021/acs.joc.2c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here, we demonstrate that α-C-H and C-N bonds of unactivated secondary amides can be activated simultaneously by the copper catalyst to synthesize α-ketoamides or α-ketoesters in one step, which is a challenging and underdeveloped transformation. Using copper as a catalyst and air as an oxidant, the reaction is compatible with a broad range of acetoamides, amines, and alcohols. The preliminary mechanism studies and density functional theory calculation indicated that the reaction process may undergo first radical α-oxygenation and then transamidation with the help of the resonant six-membered N,O-chelation and molecular oxygen plays a role as an initiator to trigger the transamidation process. The combination of chelation assistance and dioxygen selective oxygenation strategy would substantially extend the modern mild synthetic amide cleavage toolbox, and we envision that this broadly applicable method will be of great interest in the biopharmaceutical industry, synthetic chemistry, and agrochemical industry.
Collapse
Affiliation(s)
- Cong Lv
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xiuying Wang
- Inner Mongolia Autonomous Region Animal Epidemic Prevention Center, Hohhot 010020, China
| | - Dan Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zhaorigetu Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chaolumen Bai
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yong-Sheng Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
9
|
Direct Synthesis of Amides through Transamidation Using Dichloroimidazolinedione (DCID). Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
11
|
Moore AS, Stanley LM. Nickel-Catalyzed Formation of α-Substituted γ-Amino Ketones via Alkene Carboacylation. Org Lett 2022; 24:8959-8963. [DOI: 10.1021/acs.orglett.2c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Austin S. Moore
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M. Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
12
|
Flow reaction system for the synthesis of benzoylacetonitrile via the reaction of amides and acetonitrile. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Huang B, Zhang X, Guo Y, Tie S, Yang D, Li Y. A One‐Pot Three‐Step Strategy Enables Robust and Efficient Synthesis of 2‐Aryl Benzoxazoles from Amides. ChemistrySelect 2022. [DOI: 10.1002/slct.202203149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bomao Huang
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Xinlan Zhang
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yue Guo
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Shaolong Tie
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Dingqiao Yang
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| | - Yue Li
- College of Chemistry South China Normal University Guangzhou 510006 People's Republic of China
| |
Collapse
|
14
|
Kumar V, Dhawan S, Bala R, Mohite SB, Singh P, Karpoormath R. Cu-catalysed transamidation of unactivated aliphatic amides. Org Biomol Chem 2022; 20:6931-6940. [PMID: 35983826 DOI: 10.1039/d2ob01152b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct transamidation is gaining prominence as a ground-breaking technique that generates a wide variety of amides without the requirement of acid-amine coupling or other intermediate steps. However, transamidation of unactivated aliphatic amides, on the other hand, has been a long-standing issue in comparison to transamidation of activated amides. Herein, we report a transamidation approach of an unactivated aliphatic amide using a copper catalyst and chlorotrimethylsilane as an additive. In addition, we used transamidation as a tool for selective N-C(O) cleavage and O-C(O) formation to synthesise 2-substituted benzoxazoles and benzothiazoles. The reactions were carried out without using any solvents and offered wide substitution scope.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Renu Bala
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal (Westville campus), Private Bag X01, Scottsville, Durban, South Africa.
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban-4000, South Africa.
| |
Collapse
|
15
|
Singh S, Kandasamy J. Synthesis of 1,3‐dicarbonyl compounds using N‐Cbz amides as an acyl source under transition metal‐free conditions at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shweta Singh
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
16
|
Kanaujiya VK, Tiwari V, Pattanaik K, Sabiah S, Kandasamy J. Synthesis of Glycouronamides by the Transamidation Approach at Room Temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Varsha Tiwari
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | | | | | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
17
|
Sathyendran S, Senadi GC. An Umpolung Route to Amides from α‐Aminonitriles under Metal‐Free Conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N-C(O) Activation by Amide-to-Acyl Iodide Re-routing. Angew Chem Int Ed Engl 2022; 61:e202202794. [PMID: 35355386 DOI: 10.1002/anie.202202794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/20/2022]
Abstract
The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re-route the reactivity of unactivated N,N-dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide-to-amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C-N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late-stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad-ranging applications in chemical synthesis.
Collapse
Affiliation(s)
- Dongxu Zuo
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Qun Wang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Long Liu
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Tianzeng Huang
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
19
|
Zhang J, Zhao H, Li G, Zhu X, Shang L, He Y, Liu X, Ma Y, Szostak M. Transamidation of thioamides with nucleophilic amines: thioamide N-C(S) activation by ground-state-destabilization. Org Biomol Chem 2022; 20:5981-5988. [PMID: 35441645 DOI: 10.1039/d2ob00412g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China. .,Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Hui Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Guangchen Li
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Xinhao Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Linqin Shang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yang He
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| |
Collapse
|
20
|
Ali MA, Nath A, Islam MM, Shaheed SB, Dibbo IN. Combined experimental and computational study of Al 2O 3 catalyzed transamidation of secondary amides with amines. RSC Adv 2022; 12:11255-11261. [PMID: 35425074 PMCID: PMC8996366 DOI: 10.1039/d2ra00450j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Amides are the most extensively used substances in both synthetic organic and bioorganic chemistry. Unfortunately, the traditional synthesis of amides suffers from some important drawbacks, including low atom efficiency, high catalyst loading, separation of products from the reaction mixture and production of byproducts. Al2O3 is an amphoteric catalyst that activates the carbonyl carbon of the secondary amide group and helps the C-N cleavage of the reactant amide group by attacking the N-H hydrogen. By using the concepts of amphoteric properties of Al2O3, amides were synthesized from secondary amides and amines in the presence of triethylamine solvent. Several aliphatic and aromatic amines were used for the transamidation of N-methylbenzamide in the presence of the Al2O3 catalyst. Moreover, using the Gaussian09 software at the DFT level, HUMO, LUMO and the intrinsic reaction coordinates (IRCs) have also been calculated to find out the transition state of the reaction and energy. In this study, five successful compounds were synthesized by the transamidation of secondary amides with amines using a reusable Al2O3 catalyst. The catalyst was reused several times with no significant loss in its catalytic activity. The products were purified by recrystallization and column chromatography techniques. This catalytic method is effective for the simultaneous activation of the carbonyl group and N-H bond by using the Al2O3 catalyst.
Collapse
Affiliation(s)
- Md Ayub Ali
- Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh
| | - Ashutosh Nath
- Department of Chemistry, University of Massachusetts Boston MA 02125-3393 USA
| | - Md Midul Islam
- Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh
| | - Sharmin Binte Shaheed
- Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh
| | - Ifat Nur Dibbo
- Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka-1000 Bangladesh
| |
Collapse
|
21
|
Singh S, Sureshbabu P, Sabiah S, Kandasamy J. Synthesis of N‐Aryl α–Ketoamides, α–Ketoesters, α–Ketothioesters and Their Applications in Quinoxalinone Preparation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shweta Singh
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Popuri Sureshbabu
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | | | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
22
|
Kumar V, Dhawan S, Bala R, Girase PS, Singh P, Karpoormath R. Metal-free direct annulation of 2-aminophenols and 2-aminothiophenols with unactivated amides through transamidation: Access to polysubstituted benzoxazole and benzothiazole derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Zuo D, Wang Q, Liu L, Huang T, Szostak M, Chen T. Highly Chemoselective Transamidation of Unactivated Tertiary Amides by Electrophilic N–C(O) Activation via Amide‐to‐Acyl Iodide Re‐Routing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongxu Zuo
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Qun Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Long Liu
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Tianzeng Huang
- Hainan University College of Chemical Engineering and Technology CHINA
| | - Michal Szostak
- Rutgers University Newark Department of Chemistry UNITED STATES
| | - Tieqiao Chen
- Hainan University College of Chemical Engineering and Technology No. 58, Renmin Avenue, Meilan District 570228 Haikou CHINA
| |
Collapse
|
24
|
León Sandoval A, Doherty KE, Wadey GP, Leadbeater NE. Solvent- and additive-free oxidative amidation of aldehydes using a recyclable oxoammonium salt. Org Biomol Chem 2022; 20:2249-2254. [PMID: 35230379 DOI: 10.1039/d2ob00307d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A range of acyl azoles have been prepared from aromatic, heteroaromatic, and aliphatic aldehydes by means of an oxidative amidation reaction. The methodology employs a substoichiometric quantity of an oxoammonium salt as the oxidant. It avoids the need for additives such as a base, is run solvent-free, and the oxoammonium salt is recyclable.
Collapse
Affiliation(s)
- Arturo León Sandoval
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | - Katrina E Doherty
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | - Geoffrey P Wadey
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | - Nicholas E Leadbeater
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| |
Collapse
|
25
|
Sureshbabu P, Azeez S, Pattanaik K, Sabiah S, Kandasamy J. Synthesis of N‐Cbz Amides and Their Applications in the Transamidation Reactions at Room Temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Popuri Sureshbabu
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry Department of Chemistry, IIT BHU, VaranaVaranasi 221005 Varanasi INDIA
| | - Sadaf Azeez
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | | | | | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
26
|
Barbasiewicz M, Tryniszewski M. Gram-Scale Preparation of Acyl Fluorides and Their Reactions with Hindered Nucleophiles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1649-5460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractA series of acyl fluorides was synthesized at 100 mmol scale using phase-transfer-catalyzed halogen exchange between acyl chlorides and aqueous bifluoride solution. The convenient procedure consists of vigorous stirring of the biphasic mixture at room temperature, followed by extraction and distillation. Isolated acyl fluorides (usually 7–20 g) display excellent purity and can be transformed into sterically hindered amides and esters when treated with lithium amide bases and alkoxides under mild conditions.
Collapse
|
27
|
Kandasamy J, Azeez S, Shahul Hameed S, Popuri S. Controlled Reduction of Activated Primary and Secondary Amides into Aldehydes with Diisobutylaluminum Hydride. Org Biomol Chem 2022; 20:2048-2053. [DOI: 10.1039/d1ob02414k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical method is disclosed for the reduction of activated primary and secondary amides into aldehydes using diisobutylaluminum hydride (DIBAL-H) in toluene. A wide range of aryl and alkyl N-Boc,...
Collapse
|
28
|
Qu E, Li S, Bai J, Zheng Y, Li W. Nickel-Catalyzed Reductive Cross-Coupling of N-Acyl and N-Sulfonyl Benzotriazoles with Diverse Nitro Compounds: Rapid Access to Amides and Sulfonamides. Org Lett 2021; 24:58-63. [PMID: 34904834 DOI: 10.1021/acs.orglett.1c03535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report a Ni-catalyzed reductive transamidation of conveniently available N-acyl benzotriazoles with alkyl, alkenyl, and aryl nitro compounds, which afforded various amides with good yields and a broad substrate scope. The same catalytic reaction conditions were also applicable for N-sulfonyl benzotriazoles, which could undergo smooth reductive coupling with nitroarenes and nitroalkanes to afford the corresponding sulfonamides.
Collapse
Affiliation(s)
- Erdong Qu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shangzhang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yan Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
29
|
Yang Y, Liu J, Kamounah FS, Ciancaleoni G, Lee JW. A CO 2-Catalyzed Transamidation Reaction. J Org Chem 2021; 86:16867-16881. [PMID: 34723529 DOI: 10.1021/acs.joc.1c02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transamidation reactions are often mediated by reactive substrates in the presence of overstoichiometric activating reagents and/or transition metal catalysts. Here we report the use of CO2 as a traceless catalyst: in the presence of catalytic amounts of CO2, transamidation reactions were accelerated with primary, secondary, and tertiary amide donors. Various amine nucleophiles including amino acid derivatives were tolerated, showcasing the utility of transamidation in peptide modification and polymer degradation (e.g., Nylon-6,6). In particular, N,O-dimethylhydroxyl amides (Weinreb amides) displayed a distinct reactivity in the CO2-catalyzed transamidation versus a N2 atmosphere. Comparative Hammett studies and kinetic analysis were conducted to elucidate the catalytic activation mechanism of molecular CO2, which was supported by DFT calculations. We attributed the positive effect of CO2 in the transamidation reaction to the stabilization of tetrahedral intermediates by covalent binding to the electrophilic CO2.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Jian Liu
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy.,CIRCC, via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark.,Nanoscience Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| |
Collapse
|
30
|
Pise AS., Ingale AP, Dalvi NR. Ultrasound promoted environmentally benign, highly efficient, and chemoselective N-tert-butyloxycarbonylation of amines by reusable sulfated polyborate. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1992442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashok S . Pise
- Department of Chemistry, Dada Patil College, Savitribai Phule Pune University, Ahmednagar, India
- Department of Chemistry, K. J. Somaiya College of Arts, Commerce and Science, Savitribai Phule Pune University, Ahmednagar, India
| | - Ajit P. Ingale
- Department of Chemistry, Dada Patil College, Savitribai Phule Pune University, Ahmednagar, India
| | - Navnath R. Dalvi
- Department of Chemistry, K. J. Somaiya College of Arts, Commerce and Science, Savitribai Phule Pune University, Ahmednagar, India
| |
Collapse
|
31
|
Zhang Y, Ye X, Liu S, Chen W, Majeed I, Liu T, Zhu Y, Zeng Z. NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds. Org Biomol Chem 2021; 19:8566-8571. [PMID: 34550144 DOI: 10.1039/d1ob01409a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.
Collapse
Affiliation(s)
- Yuqi Zhang
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Xiaojing Ye
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Sicheng Liu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Wei Chen
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Irfan Majeed
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Tingting Liu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Yulin Zhu
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China.
| | - Zhuo Zeng
- College of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China. .,Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, China
| |
Collapse
|
32
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
33
|
Singh S, Popuri S, Junaid QM, Sabiah S, Kandasamy J. Diversification of α-ketoamides via transamidation reactions with alkyl and benzyl amines at room temperature. Org Biomol Chem 2021; 19:7134-7140. [PMID: 34355726 DOI: 10.1039/d1ob01021b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A wide range of N-tosyl α-ketoamides underwent transamidation with various alkyl amines in the absence of a catalyst, base, or additive. On the other hand, transamidation in N-Boc α-ketoamides was achieved in the presence of Cs2CO3. The reactions proceeded at room temperature and provided good to excellent yields of transamidation products under the optimized conditions. Broad substrate scope, functional group tolerance and quick conversions are the important features of the developed methodology.
Collapse
Affiliation(s)
- Shweta Singh
- Department of chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | | | | | | | | |
Collapse
|
34
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
35
|
Wang T, Wang Y, Xu K, Zhang Y, Guo J, Liu L. Transition‐Metal‐Free DMAP‐Mediated Aromatic Esterification of Amides with Organoboronic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Yanqing Wang
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
| | - Kai Xu
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Yuheng Zhang
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Jiarui Guo
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
| | - Lantao Liu
- School of Chemistry and Chemical Engineering Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals Shangqiu Normal University Shangqiu Henan 476000 China
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Biomolecular Recognition and Sensing Shangqiu Normal University Shangqiu Henan 476000 China
- College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
36
|
Feng FF, Liu XY, Cheung CW, Ma JA. Tungsten-Catalyzed Transamidation of Tertiary Alkyl Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang-Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xuan-Yu Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
37
|
Migliorini F, Dei F, Calamante M, Maramai S, Petricci E. Micellar Catalysis for Sustainable Hydroformylation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Francesca Migliorini
- Department of Biochemistry Chemistry and Pharmacy University of Siena Via A. Moro 53100 Siena Italy
| | - Filippo Dei
- Department of Biochemistry Chemistry and Pharmacy University of Siena Via A. Moro 53100 Siena Italy
| | - Massimo Calamante
- CNR – ICCOM Dipartimento di Chimica Università degli Studi di Firenze Via Madonna del Piano, 10 50019 Sesto Fiorentino Firenze Italy
| | - Samuele Maramai
- Department of Biochemistry Chemistry and Pharmacy University of Siena Via A. Moro 53100 Siena Italy
| | - Elena Petricci
- Department of Biochemistry Chemistry and Pharmacy University of Siena Via A. Moro 53100 Siena Italy
| |
Collapse
|
38
|
Govindan K, Lin WY. Ring Opening/Site Selective Cleavage in N-Acyl Glutarimide to Synthesize Primary Amides. Org Lett 2021; 23:1600-1605. [PMID: 33570960 DOI: 10.1021/acs.orglett.1c00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A LiOH-promoted hydrolysis selective C-N cleavage of twisted N-acyl glutarimide for the synthesis of primary amides under mild conditions has been developed. The reaction is triggered by a ring opening of glutarimide followed by C-N cleavage to afford primary amides using 2 equiv of LiOH as the base at room temperature. The efficacy of the reactions was considered and administrated for various aryl and alkyl substituents in good yield with high selectivity. Moreover, gram-scale synthesis of primary amides using a continuous flow method was achieved. It is noted that our new methodology can apply under both batch and flow conditions for synthetic and industrial applications.
Collapse
Affiliation(s)
- Karthick Govindan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, ROC.,Drug Development and Value Creation Research Centre, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, ROC
| |
Collapse
|
39
|
Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. Iron-Catalyzed Cycloaddition of Amides and 2,3-Diaryl-2 H-azirines To Access Oxazoles via C-N Bond Cleavage. J Org Chem 2021; 86:2957-2964. [PMID: 33443426 DOI: 10.1021/acs.joc.0c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2H-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Gui-Wan Ning
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Li-Fang Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|
40
|
Joseph D, Park MS, Lee S. Metal-free transamidation of benzoylpyrrolidin-2-one and amines under aqueous conditions. Org Biomol Chem 2021; 19:6227-6232. [PMID: 34225358 DOI: 10.1039/d1ob00967b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
N-Acyl lactam amides, such as benzoylpyrrolidin-2-one, benzoylpiperidin-2-one, and benzoylazepan-2-one reacted with amines in the presence of DTBP and TBAI to afford the transamidated products in good yields. The reactions were conducted under aqueous conditions and good functional group tolerance was achieved. Both aliphatic and aromatic primary amines displayed good activity under metal-free conditions. A radical reaction pathway is proposed.
Collapse
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Myeong Seong Park
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
41
|
Idris MA, Lee S. Palladium-Catalyzed Amide N–C Hiyama Cross-Coupling: Synthesis of Ketones. Org Lett 2020; 22:9190-9195. [DOI: 10.1021/acs.orglett.0c03260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Muhammad Aliyu Idris
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
42
|
Lee H, Cho S, Lee Y, Jung B. Stereoselective Formal Hydroamidation of Si-Substituted Arylacetylenes with DIBAL-H and Isocyanates: Synthesis of ( E)- and ( Z)-α-Silyl-α,β-unsaturated Amides. J Org Chem 2020; 85:12024-12035. [PMID: 32909750 DOI: 10.1021/acs.joc.0c01903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient and stereoselective method for the synthesis of (E)- and (Z)-α-silyl-α,β-unsaturated amides and its synthetic applications are presented herein. The solvent-controlled hydroaluminations of Si-substituted alkynes with DIBAL-H generate diastereomerically enriched alkenylaluminum reagents that are directly reacted with isocyanates at ambient temperature to afford α-silyl-α,β-unsaturated amides in high yields with retained stereoselectivity. In particular, this process enables the synthesis of a broad range of (E)-α-silyl-α,β-unsaturated amides, which are the less studied isomers. The synthetic utility of this method is highlighted by its short reaction time, ease of purification, easily accessible substrates and reagents, gram-scale synthesis, and the further transformations of C-Si bonds into C-H, C-X, and C-C bonds.
Collapse
Affiliation(s)
- Hanseul Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Soohong Cho
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Byunghyuck Jung
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
43
|
Kang B, Yasuno Y, Okamura H, Sakai A, Satoh T, Kuse M, Shinada T. N-Acylcarbazole as a Selective Transamidation Reagent. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bubwoong Kang
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Hironori Okamura
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Asumi Sakai
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Tetsuya Satoh
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Masaki Kuse
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
44
|
Gaspa S, Farina A, Tilocca M, Porcheddu A, Pisano L, Carraro M, Azzena U, De Luca L. Visible-Light Photoredox-Catalyzed Amidation of Benzylic Alcohols. J Org Chem 2020; 85:11679-11687. [PMID: 32662268 PMCID: PMC8009506 DOI: 10.1021/acs.joc.0c01320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new photocatalyzed route to amides from alcohols and amines mediated by visible light is presented. The reaction is carried out in ethyl acetate as a solvent. Ethyl acetate can be defined a green and bio-based solvent. The starting materials such as the energy source are easily available, stable, and inexpensive. The reaction has shown to be general and high yielding.
Collapse
Affiliation(s)
- Silvia Gaspa
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Farina
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mariella Tilocca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Luisa Pisano
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Massimo Carraro
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Ugo Azzena
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Lidia De Luca
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
45
|
Aegurla B, Mandle RD, Shinde PG, Parit RS, Kamble SP, Sudalai A, Senthilkumar B. Triethyl Phosphite/Benzoyl Peroxide Mediated Reductive Dealkylation of
O
‐Benzoylhydroxylamines: A Cascade Synthesis of Secondary Amides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Balakrishna Aegurla
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Ram D. Mandle
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Prasad G. Shinde
- Organic Chemistry Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Ratan S. Parit
- Organic Chemistry Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Sanjay P. Kamble
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Arumugam Sudalai
- Chemical Engineering & Process Development Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| | - Beeran Senthilkumar
- Organic Chemistry Division CSIR‐National Chemical Laboratory Dr. Homi Bhabha Road ‐ 411008 Pune Maharashtra India
| |
Collapse
|
46
|
Laclef S, Kolympadi Marković M, Marković D. Amide Synthesis by Transamidation of Primary Carboxamides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The amide functionality is one of the most important and widely used groups in nature and in medicinal and industrial chemistry. Because of its importance and as the actual synthetic methods suffer from major drawbacks, such as the use of a stoichiometric amount of an activating agent, epimerization and low atom economy, the development of new and efficient amide bond forming reactions is needed. A number of greener and more effective strategies have been studied and developed. The transamidation of primary amides is particularly attractive in terms of atom economy and as ammonia is the single byproduct. This review summarizes the advancements in metal-catalyzed and organocatalyzed transamidation methods. Lewis and Brønsted acid transamidation catalysts are reviewed as a separate group. The activation of primary amides by promoter, as well as catalyst- and promoter-free protocols, are also described. The proposed mechanisms and key intermediates of the depicted transamidation reactions are shown.1 Introduction2 Metal-Catalyzed Transamidations3 Organocatalyzed Transamidations4 Lewis and Brønsted Acid Catalysis5 Promoted Transamidation of Primary Amides6 Catalyst- and Promoter-Free Protocols7 Conclusion
Collapse
Affiliation(s)
- Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378 - Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne
| | | | | |
Collapse
|
47
|
Szostak M, Li G. Non-Classical Amide Bond Formation: Transamidation and Amidation of Activated Amides and Esters by Selective N–C/O–C Cleavage. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past several years, tremendous advances have been made in non-classical routes for amide bond formation that involve transamidation and amidation reactions of activated amides and esters. These new methods enable the formation of extremely valuable amide bonds via transition-metal-catalyzed, transition-metal-free, or metal-free pathways by exploiting chemoselective acyl C–X (X = N, O) cleavage under mild conditions. In a broadest sense, these reactions overcome the formidable challenge of activating C–N/C–O bonds of amides or esters by rationally tackling nN → π*C=O delocalization in amides and nO → π*C=O donation in esters. In this account, we summarize the recent remarkable advances in the development of new methods for the synthesis of amides with a focus on (1) transition-metal/NHC-catalyzed C–N/C–O bond activation, (2) transition-metal-free highly selective cleavage of C–N/C–O bonds, (3) the development of new acyl-transfer reagents, and (4) other emerging methods.1 Introduction2 Transamidation of Amides2.1 Transamidation by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)2.2 Transition-Metal-Free Transamidation via Tetrahedral Intermediates2.3 Reductive Transamidation2.4 New Acyl-Transfer Reagents2.5 Tandem Transamidations3 Amidation of Esters3.1 Amidation of Esters by Metal–NHC Catalysis (Pd–NHC, Ni–NHC)3.2 Transition-Metal-Free Amidation of Esters via Tetrahedral Intermediates3.3 Reductive Amidation of Esters4 Transamidations of Amides by Other Mechanisms5 Conclusions and Outlook
Collapse
|
48
|
Fairley M, Bole LJ, Mulks FF, Main L, Kennedy AR, O'Hara CT, García-Alvarez J, Hevia E. Ultrafast amidation of esters using lithium amides under aerobic ambient temperature conditions in sustainable solvents. Chem Sci 2020; 11:6500-6509. [PMID: 32874519 PMCID: PMC7441706 DOI: 10.1039/d0sc01349h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Using 2-methyl THF as solvent enables efficient and ultrafast amidation of esters by lithium amides at room temperature in air, edging closer towards reaching air- and moisture-compatible polar organometallic chemistry.
Lithium amides constitute one of the most commonly used classes of reagents in synthetic chemistry. However, despite having many applications, their use is handicapped by the requirement of low temperatures, in order to control their reactivity, as well as the need for dry organic solvents and protective inert atmosphere protocols to prevent their fast decomposition. Advancing the development of air- and moisture-compatible polar organometallic chemistry, the chemoselective and ultrafast amidation of esters mediated by lithium amides is reported. Establishing a novel sustainable access to carboxamides, this has been accomplished via direct C–O bond cleavage of a range of esters using glycerol or 2-MeTHF as a solvent, in air. High yields and good selectivity are observed while operating at ambient temperature, without the need for transition-metal mediation, and the protocol extends to transamidation processes. Pre-coordination of the organic substrate to the reactive lithium amide as a key step in the amidation processes has been assessed, enabling the structural elucidation of the coordination adduct [{Li(NPh2)(O
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CPh(NMe2))}2] (8) when toluene is employed as a solvent. No evidence for formation of a complex of this type has been found when using donor THF as a solvent. Structural and spectroscopic insights into the constitution of selected lithium amides in 2-MeTHF are provided that support the involvement of small kinetically activated aggregates that can react rapidly with the organic substrates, favouring the C–O bond cleavage/C–N bond formation processes over competing hydrolysis/degradation of the lithium amides by moisture or air.
Collapse
Affiliation(s)
- Michael Fairley
- Department of Pure and Applied Chemistry , University of Strathclyde Glasgow , G1 1XL , UK
| | - Leonie J Bole
- Department für Chemie und Biochemie , Universität Bern , CH3012 , Bern , Switzerland .
| | - Florian F Mulks
- Department of Pure and Applied Chemistry , University of Strathclyde Glasgow , G1 1XL , UK.,Department für Chemie und Biochemie , Universität Bern , CH3012 , Bern , Switzerland .
| | - Laura Main
- Department of Pure and Applied Chemistry , University of Strathclyde Glasgow , G1 1XL , UK
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry , University of Strathclyde Glasgow , G1 1XL , UK
| | - Charles T O'Hara
- Department of Pure and Applied Chemistry , University of Strathclyde Glasgow , G1 1XL , UK
| | - Joaquín García-Alvarez
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC) , Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Departamento de Química Orgánica e Inorgánica (IUQOEM) , Facultad de Química , Universidad de Oviedo , E-33071 , Oviedo , Spain
| | - Eva Hevia
- Department of Pure and Applied Chemistry , University of Strathclyde Glasgow , G1 1XL , UK.,Department für Chemie und Biochemie , Universität Bern , CH3012 , Bern , Switzerland .
| |
Collapse
|
49
|
Chen J, Xia Y, Lee S. Transamidation for the Synthesis of Primary Amides at Room Temperature. Org Lett 2020; 22:3504-3508. [DOI: 10.1021/acs.orglett.0c00958] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, P. R. China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
50
|
Gulledge ZZ, Carrick JD. Deprotection of
N
‐
tert
‐Butoxycarbonyl (Boc) Protected Functionalized Heteroarenes via Addition–Elimination with 3‐Methoxypropylamine. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zachary Z. Gulledge
- Department of Chemistry Tennessee Technological University 55 University Drive 38505‐0001 Cookeville TN USA
| | - Jesse D. Carrick
- Department of Chemistry Tennessee Technological University 55 University Drive 38505‐0001 Cookeville TN USA
| |
Collapse
|