1
|
Jaiswal MK, Yadav MS, Maurya S, Ansari D, Tiwari VK. HFIP-Mediated Synthesis of 4-Aryl- NH-1,2,3-Triazoles and 1,5-Disubstituted 1,2,3-Triazolyl Glycoconjugates. J Org Chem 2024; 89:17213-17227. [PMID: 39509605 DOI: 10.1021/acs.joc.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We herein report a multicomponent reaction for the synthesis of N-unsubstituted-1,2,3-triazoles and N-substituted-1,2,3 triazoles from the reaction of aldehydes, nitroalkanes, and sodium azides/glycosyl azides in the presence of 1,1,1,3,3,3-hexafluoroisopropanol, a hydrogen bond-donating reaction medium. This three-component reaction provides a metal-free strategy for sequentially forming one C-C and two C-N bonds in a one-pot fashion. One-pot mild reaction condition, operational simplicity, wide substrate scope, good functional group tolerance, easy purification, high reaction yields, and altogether excellent regioselectivity are the notable advantages of this 1,2,3-triazole-forming protocol. Moreover, this protocol provides practical access to the gram-scale synthesis of potent inhibitors of indoleamine 2,3-dioxygenase 1.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shristy Maurya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Danish Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
2
|
Leng J, Xu J, Li Y, Wang SM, Qin HL. A mild protocol for efficient preparation of functional molecules containing triazole. RSC Adv 2024; 14:7601-7608. [PMID: 38440271 PMCID: PMC10911410 DOI: 10.1039/d4ra01271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
The construction of a class of novel triazole molecules containing sulfonyl fluoride functionalities was achieved through Cu-catalyzed click chemistry in good to excellent yields. The sulfonyl fluoride moieties were cleaved completely under base conditions to produce N-unsubstituted triazoles quantitatively, which provides a strategy to combine SuFEx click chemistry with Cu-catalyzed click chemistry ingeniously.
Collapse
Affiliation(s)
- Jing Leng
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Jie Xu
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Shi-Meng Wang
- Xiangyang Public Inspection and Testing Center No. 69, Taiziwan Road Xiangyang Hubei Province 441000 P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| |
Collapse
|
3
|
Li M, Wan QY, Lin RL, Peng YQ, Shu WM, Yu WC, Wu AX. Azide-free cyclization reaction access to 4-aryl- NH-1,2,3-triazoles: P-toluenesulfonyl hydrazide and sulfamic acid as nitrogen sources. Org Biomol Chem 2024; 22:482-485. [PMID: 38108209 DOI: 10.1039/d3ob01661g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
An iodine-mediated cyclization has been developed to 4-aryl-NH-1,2,3-triazoles, with p-toluenesulfonyl hydrazide and sulfamic acid used as nitrogen sources. Sulfamic acid plays a crucial role in this reaction by both acting as a substrate and providing an acidic environment. This reaction offers a metal- and azide-free strategy to access NH-1,2,3-triazoles.
Collapse
Affiliation(s)
- Min Li
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China.
| | - Qing-Yu Wan
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China.
| | - Ri-Lan Lin
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China.
| | - Yan-Qing Peng
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China.
| | - Wen-Ming Shu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China.
| | - Wei-Chu Yu
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
4
|
Bandyopadhyay M, Bhadra S, Pathak S, Menon AM, Chopra D, Patra S, Escorihuela J, De S, Ganguly D, Bhadra S, Bera MK. An Atom-Economic Method for 1,2,3-Triazole Derivatives via Oxidative [3 + 2] Cycloaddition Harnessing the Power of Electrochemical Oxidation and Click Chemistry. J Org Chem 2023; 88:15772-15782. [PMID: 37924324 DOI: 10.1021/acs.joc.3c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
An electrochemical method was developed to accomplish the reagentless synthesis of 4,5-disubstituted triazole derivatives employing secondary propargyl alcohol as C-3 synthon and sodium azide as cycloaddition counterpart. The reaction was conducted at room temperature in an undivided cell with a constant current using a pencil graphite (C) anode and stainless-steel cathode in a MeCN solvent system. The proposed reaction mechanism was convincingly established by carrying out a series of control experiments and further supported by electrochemical and density functional theory (DFT) studies.
Collapse
Affiliation(s)
- Manas Bandyopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Sayan Bhadra
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Swastik Pathak
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Anila M Menon
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Deepak Chopra
- Department of Chemistry, IISER Bhopal, Bhopal Bypass Road, Bhopal 462066, Madhya Pradesh India
| | - Snehangshu Patra
- Sustainable Hydrogen for Valuable Applications (SHYVA), 23 Allee Gilbert Becaud, 34470 Perols, France
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicente Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Souradeep De
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology (IIEST), P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Suman Bhadra
- Centre for Health Science and Technology (CHeST), JIS Institute of Advanced Studies and Research Kolkata, Saltlake, Kolkata 700091, West Bengal, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| |
Collapse
|
5
|
Panjacharam P, Ulabala V, Jayakumar J, Rajasekhara Reddy S. Emerging trends in the sustainable synthesis of N-N bond bearing organic scaffolds. Org Biomol Chem 2023; 21:2632-2652. [PMID: 36883312 DOI: 10.1039/d3ob00300k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
N-N bond bearing organic frameworks such as azos, hydrazines, indazoles, triazoles and their structural moieties have piqued the interest of organic chemists due to the intrinsic nitrogen electronegativity. Recent methodologies with atom efficacy and a greener approach have overcome the synthetic obstacles of N-N bond construction from N-H. As a result, a wide range of amine oxidation methods have been reported early on. This review's vision emphasizes the emerging methods of N-N bond formation, particularly photo, electro, organo and transition metal free chemical methods.
Collapse
Affiliation(s)
| | - Vijayasree Ulabala
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technology (RGUKT), Nuzvid 521202, India.
| | | | | |
Collapse
|
6
|
A comprehensive review of sources of nitrosamine contamination of pharmaceutical substances and products. Regul Toxicol Pharmacol 2023; 139:105355. [PMID: 36792049 DOI: 10.1016/j.yrtph.2023.105355] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
N-nitrosamines are carcinogenic impurities most commonly found in groundwater, treated water, foods, beverages and consumer products. The recent discovery of N-nitrosamines in pharmaceutical products and subsequent recalls pose a significant health risk to patients. Initial investigation by the regulatory agency identified Active Pharmaceutical Ingredients (API) as a source of contamination. However, N-nitrosamine formation during API synthesis is a consequence of numerous factors like chemistry selection for synthesis, contaminated solvents and water. Furthermore, apart from API, N-nitrosamines have also been found to embed in the final product due to degradation during formulation processing or storage through contaminated excipients and printing inks. The landscape of N-nitrosamine contamination of pharmaceutical products is very complex and needs a comprehensive compilation of sources responsible for N-nitrosamine contamination of pharmaceutical products. Therefore, this review aims to extensively compile all the reported and plausible sources of nitrosamine impurities in pharmaceutical products. The topics like risk assessment and quantitative strategies to estimate nitrosamines in pharmaceutical products are out of the scope of this review.
Collapse
|
7
|
Abdalkareem Jasim S, B. Mohammed D, Turki Jalil A, F. Smaisim G, Shareef Mohsen K, Abed Hussein S, Shafik MS. An Efficient and Attractive Synthetic Protocol for Three-component Preparation of NH-1,2,3-Triazoles Using a Novel Magnetically Recoverable Copper Catalyst. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2167217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Doaa B. Mohammed
- Department of Laser and Optical Electronics Engineering, Kut University College, Iraq
| | | | | | - Karrar Shareef Mohsen
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | | | | |
Collapse
|
8
|
Kariuki BM, Abdel-Wahab BF, Mohamed HA, Bekheit MS, El-Hiti GA. Synthesis and Characterization of Novel 2-(1,2,3-Triazol-4-yl)-4,5-dihydro-1 H-pyrazol-1-yl)thiazoles and 2-(4,5-Dihydro-1 H-pyrazol-1-yl)-4-(1 H-1,2,3-triazol-4-yl)thiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248904. [PMID: 36558037 PMCID: PMC9786072 DOI: 10.3390/molecules27248904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Reactions of 1-(5-methyl)-1H-1,2,3-triazol-4-yl)ethan-1-ones and benzaldehydes in ethanol under basic conditions gave the corresponding chalcones. Reactions of the chalcones combined with thiosemicarbazide in dry ethanol containing sodium hydroxide afforded the corresponding pyrazolin-N-thioamides. Reactions of the synthesized pyrazolin-N-thioamides and several ketones (namely, ethyl 2-chloro-3-oxobutanoate, 2-bromoacetylbenzofuran, and hydrazonoyl chloride) gave the corresponding novel 2-(1,2,3-triazol-4-yl)-4,5-dihydro-1H-pyrazol-1-yl)thiazoles in high yields (77-90%). Additionally, 2-(4,5-dihydro-1H-pyrazol-1-yl)-4-(1H-1,2,3-triazol-4-yl)thiazoles were obtained in high yields (84-87%) from reactions with N-pyrazoline-thioamides and 4-bromoacetyl-1,2,3-triazoles under basic conditions. The structures of six of the newly synthesized heterocycles were confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
- Correspondence: (B.M.K.); (G.A.E.-H.); Tel.: +44-29-2087-0401 (B.M.K.); +966-1-1469-3778 (G.A.E.-H.); Fax: +966-1-1469-3536 (G.A.E.-H.)
| | - Bakr F. Abdel-Wahab
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Hanan A. Mohamed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Gamal A. El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Correspondence: (B.M.K.); (G.A.E.-H.); Tel.: +44-29-2087-0401 (B.M.K.); +966-1-1469-3778 (G.A.E.-H.); Fax: +966-1-1469-3536 (G.A.E.-H.)
| |
Collapse
|
9
|
Ishihara K, Ishihara K, Kato Y, Shibuya S, Shioiri T, Matsugi M. A solvent-free synthesis of 4-aryl- NH-1,2,3-triazoles from ketones utilizing diphenyl phosphorazidate. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2086466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Yamato Kato
- Faculty of Agriculture, Meijo University, Tempaku, Japan
| | - Shota Shibuya
- Faculty of Agriculture, Meijo University, Tempaku, Japan
| | | | - Masato Matsugi
- Faculty of Agriculture, Meijo University, Tempaku, Japan
| |
Collapse
|
10
|
Andreev I, Boichenko M, Ratmanova N, Ivanova O, Levina I, Khrustalev V, Sedov I, Trushkov I. 4‐(Dimethylamino)pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivan Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | - Maksim Boichenko
- Lomonosov Moscow State University Department of Chemistry RUSSIAN FEDERATION
| | - Nina Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | | | - Irina Levina
- FSBSI Institute of Biochemical Physics named after N M Emanuel of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | - Igor Sedov
- Kazan Federal University RUSSIAN FEDERATION
| | - Igor Trushkov
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
11
|
Singhal R, Choudhary SP, Malik B, Pilania M. Emerging Trends in
N
‐Tosylhydrazone Mediated Transition‐Metal‐Free Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Satya Prakash Choudhary
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Babita Malik
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Meenakshi Pilania
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| |
Collapse
|
12
|
Quantum Computational Investigation of (E)-1-(4-methoxyphenyl)-5-methyl-N′-(3-phenoxybenzylidene)-1H-1,2,3-triazole-4-carbohydrazide. Molecules 2022; 27:molecules27072193. [PMID: 35408592 PMCID: PMC9000758 DOI: 10.3390/molecules27072193] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
The title compound was synthesized and structurally characterized. Theoretical IR, NMR (with the GIAO technique), UV, and nonlinear optical properties (NLO) in four different solvents were calculated for the compound. The calculated HOMO–LUMO energies using time-dependent (TD) DFT revealed that charge transfer occurs within the molecule, and probable transitions in the four solvents were identified. The in silico absorption, distribution, metabolism, and excretion (ADME) analysis was performed in order to determine some physicochemical, lipophilicity, water solubility, pharmacokinetics, drug-likeness, and medicinal properties of the molecule. Finally, molecular docking calculation was performed, and the results were evaluated in detail.
Collapse
|
13
|
Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Sodium Azide: An Inorganic Nitrogen Source for the Synthesis of Organic
N
‐Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202103271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran I.R. Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran I.R. Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran I.R. Iran
| |
Collapse
|
14
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
15
|
Huang C, Geng X, Zhao P, Zhou Y, Yu XX, Wang LS, Wu YD, Wu AX. Direct Synthesis of 4-Aryl-1,2,3-triazoles via I 2-Promoted Cyclization under Metal- and Azide-Free Conditions. J Org Chem 2021; 86:13664-13672. [PMID: 34519212 DOI: 10.1021/acs.joc.1c01702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein report an iodine-mediated formal [2 + 2 + 1] cyclization of methyl ketones, p-toluenesulfonyl hydrazines, and 1-aminopyridinium iodide for preparation of 4-aryl-NH-1,2,3-triazoles under metal- and azide-free conditions. Notably, this is achieved using p-toluenesulfonyl hydrazines and 1-aminopyridinium iodide as azide surrogates, providing a novel route toNH-1,2,3-triazoles. Furthermore, this approach provides rapid and practical access to potent inhibitors of indoleamine 2,3-dioxygenase (IDO).
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Li-Sheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
16
|
Kumar A, Katiyar S, Kumar Jaiswal A, Kant R, Sashidhara KV. PIDA-mediated oxidative aromatic C N bond cleavage: Efficient methodology for the synthesis of 1,2-diaza-1,3-dienes under ambient conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
18
|
Vagish CB, Kumara K, Vivek HK, Bharath S, Lokanath NK, Ajay Kumar K. Coumarin-triazole hybrids: Design, microwave-assisted synthesis, crystal and molecular structure, theoretical and computational studies and screening for their anticancer potentials against PC-3 and DU-145. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Multi- arm dendronized polymer as a unimolecular micelle: Synthesis, characterization and application as organocatalyst in the synthesis of N-unsubstituted 1,2,3-triazoles. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Liu Z, Lou J, Xiao J. TBAI/K2S2O8-Promoted [4 + 2] Annulation of Ketene N,S-Acetals and N-Tosylhydrazones toward Pyridazines. Org Lett 2021; 23:1606-1610. [DOI: 10.1021/acs.orglett.1c00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhuqing Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Jiang Lou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
- Advanced Research Institute for Multidisciplinary Science, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, P. R. China
| |
Collapse
|
21
|
Opsomer T, Dehaen W. Metal-free syntheses of N-functionalized and NH-1,2,3-triazoles: an update on recent developments. Chem Commun (Camb) 2021; 57:1568-1590. [PMID: 33491711 DOI: 10.1039/d0cc06654k] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of the latest developments in the metal-free synthesis of non-benzo-fused N-functionalized and NH-1,2,3-triazoles is provided in this feature article. Synthetic studies that appeared from 2016 until August 2020 are organized according to a wide-ranging classification, comprising oxidative and eliminative azide-dipolarophile cycloadditions, diazo transfer reactions and N-tosylhydrazone-mediated syntheses. The newly developed methods constitute a significant contribution to the field of 1,2,3-triazole synthesis in terms of structural variation via either the exploration of novel reactions, or the exploitation of existing methodologies.
Collapse
Affiliation(s)
- Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | |
Collapse
|
22
|
Bi J, Sun X, Gao S, Chen C, Zhang G. Copper Catalyzed Synthesis of 2H-1,2,3-Triazoles in Green Solvent. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zheng X, Liu Y, Wan JP. Metal-Free Synthesis of 1,2,3-Triazoles in Pure Water via the Enamine Modified Annulation Reactions with Tosyl Azide. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Jadhav PM, Rode AB, Kótai L, Pawar RP, Tekale SU. Revisiting applications of molecular iodine in organic synthesis. NEW J CHEM 2021. [DOI: 10.1039/d1nj02560k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular iodine contributes significantly to organic transformations in synthetic organic chemistry. It works effectively due to its mild Lewis acidic character, ability as an oxidizing agent, good moisture stability, and easy availability.
Collapse
Affiliation(s)
- Popat M. Jadhav
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| | - Ambadas B. Rode
- Regional Centre for Biotechnology, Faridabad-121 001, Haryana (NCR Delhi), India
| | - László Kótai
- Research Centre for Natural Sciences, ELKH, H-1117, Budapest, Hungary
| | - Rajendra P. Pawar
- Department of Chemistry, Shiv Chhatrapati College, Aurangabad 431005, Maharashtra, India
| | - Sunil U. Tekale
- Department of Chemistry, Deogiri College, Aurangabad 431 005, Maharashtra, India
| |
Collapse
|
25
|
Wu L, Qiu S, Chen Y, Song X, Liu L, Liu X. Potassium tert-Butoxide Promoted Synthesis of 4,5-Diaryl-2H-1,2,3-triazoles from Tosylhydrazones and Nitriles. Synlett 2020. [DOI: 10.1055/s-0040-1707321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractIntermolecular cycloaddition of tosylhydrazones with nitriles was investigated. t-BuOK was shown to be an excellent base for increasing the effectiveness of the reaction in this protocol, and homocoupling of the tosylhydrazones was significantly inhibited by using xylene as a solvent. Through this transformation, a variety of 4,5-diaryl-2H-1,2,3-triazoles were prepared in good to excellent yields and with high purities. The process is azide-free and transition-metal-free.
Collapse
Affiliation(s)
- Luyong Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University
| | | | | | | | | | | |
Collapse
|
26
|
Ren MT, Li M, Wang AJ, Gao J, Zhang XX, Shu WM. Iodine-Mediated Condensation-Cyclization of α-Azido Ketones with p
-Toluenesulfonyl Hydrazide for Synthesis of 4-Aryl-NH
-1,2,3-Triazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ming-Tian Ren
- College of Chemistry and Environmental Engineering; Yangtze University; 434023 Jingzhou P. R. China
| | - Min Li
- College of Chemistry and Environmental Engineering; Yangtze University; 434023 Jingzhou P. R. China
| | - An-Jing Wang
- College of Chemistry and Environmental Engineering; Yangtze University; 434023 Jingzhou P. R. China
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials; Hubei University of Science and Technology; 437100 Xianning P. R. China
| | - Xiang-Xiang Zhang
- College of Chemistry and Environmental Engineering; Yangtze University; 434023 Jingzhou P. R. China
| | - Wen-Ming Shu
- College of Chemistry and Environmental Engineering; Yangtze University; 434023 Jingzhou P. R. China
| |
Collapse
|
27
|
Alexander JR, Packard MH, Hildebrandt AM, Ott AA, Topczewski JJ. Divergent Mechanisms of the Banert Cascade with Propargyl Azides. J Org Chem 2020; 85:3174-3181. [PMID: 31944764 DOI: 10.1021/acs.joc.9b03061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triazoles are privileged heterocycles for a variety of applications. The synthesis of 1H-triazoles can be accomplished by the Banert cascade from propargylic azides. Depending on the substrate and conditions, the Banert cascade can proceed by either a sigmatropic or prototropic mechanism. This report describes the first detailed kinetic analysis of the Banert cascade proceeding by both pathways including substituent effects and KIE. The analysis identified the inflection point in the divergent pathways, allowing future work to predict which Banert products are accessible.
Collapse
Affiliation(s)
- Juliana R Alexander
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Mary H Packard
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Alanna M Hildebrandt
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Amy A Ott
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Joseph J Topczewski
- Department of Chemistry, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Lu H, Li Z. Synthesis of 1,2,3-Triazolyl-Based Ketoximes Using Calcium Carbide as an Acetylene Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hao Lu
- Chemistry and Chemical Engineering; Northwest Normal University; 730070 Lanzhou Gansu P. R. China
| | - Zheng Li
- Chemistry and Chemical Engineering; Northwest Normal University; 730070 Lanzhou Gansu P. R. China
| |
Collapse
|
29
|
Feng J, He T, Xie Y, Yu Y, Baell JB, Huang F. I 2-Promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones: facile and efficient synthesis of 1,4-dihydropyridazines and pyridazines. Org Biomol Chem 2020; 18:9483-9493. [PMID: 33179698 DOI: 10.1039/d0ob01958e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile and efficient strategy for the synthesis of 1,4-dihydropyridazines and pyridazines through I2-promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones has been developed. The switch in selectivity is attributed to the judicious choice of different reaction temperatures. The key features of this work include controllable and selective synthesis, good functional group tolerance, good to excellent reaction yields, metal/base-free conditions, and also applicability to one-pot methodology.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Tiantong He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
30
|
Wang Q, Wang X, Liu Q, Xie G, Ding S, Wang X, Fan H. Electrochemical one-pot synthesis of five-membered azaheterocycles via [4 + 1] cyclization. Org Chem Front 2020. [DOI: 10.1039/d0qo01068e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Five-membered N-heterocycles, such as oxadiazoles, thiadiazoles, oxazolines and imidazoles, have been prepared via electrochemical oxidation/[4 + 1] cyclization/dehydrogenative aromatization in one pot from readily available materials.
Collapse
Affiliation(s)
- Qiang Wang
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- China
- Department of Applied Chemistry
| | - Xincan Wang
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- China
| | - Qiang Liu
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- China
- School of Pharmacy
| | - Guanqun Xie
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- China
| | - Shujiang Ding
- Department of Applied Chemistry
- School of Chemistry
- Xían Jiaotong University
- Xían
- China
| | - Xiaoxia Wang
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- China
| | - Hongbo Fan
- School of Materials Science and Engineering
- Dongguan University of Technology
- Dongguan
- China
| |
Collapse
|