1
|
Liu X, Portela BS, Wiedenbeck A, Chrisman CH, Paton RS, Miyake GM. Organocatalyzed Carbonylation of Alkyl Halides Driven by Visible Light. Angew Chem Int Ed Engl 2024:e202410928. [PMID: 39110753 DOI: 10.1002/anie.202410928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 11/01/2024]
Abstract
Herein, we describe a new strategy for the carbonylation of alkyl halides with different nucleophiles to generate valuable carbonyl derivatives under visible light irradiation. This method is mild, robust, highly selective, and proceeds under metal-free conditions to prepare a range of structurally diverse esters and amides in good to excellent yields. In addition, we highlight the application of this activation strategy for 13C isotopic incorporation. We propose that the reaction proceeds by a photoinduced reduction to afford carbon-centered radicals from alkyl halides, which undergo subsequent single electron-oxidation to form a carbocationic intermediate. Carbon monoxide is trapped by the carbocation to generate an acylium cation, which can be attacked by a series of nucleophiles to give a range of carbonyl products.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Brandon S Portela
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Analiese Wiedenbeck
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Cameron H Chrisman
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| |
Collapse
|
2
|
Chuentragool P, Ngamnithiporn A, Hongboon P, Ruchirawat S. Visible Light-Induced One-Pot Carbonylation of Alkyl Halides with Aryl Formates. J Org Chem 2024; 89:4205-4209. [PMID: 38447064 PMCID: PMC11351429 DOI: 10.1021/acs.joc.3c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Described herein is the development of a visible-light-driven carbonylation of alkyl halides. The exploitation of visible light to activate Pd complexes and the use of formates to serve the dual role of a CO surrogate and a phenoxide source allow the preparation of esters in moderate to good yields. Its relatively mild reaction conditions and the ability to perform this transformation without direct handling of toxic CO gas provide a practical means to access esters from alkyl halides.
Collapse
Affiliation(s)
- Padon Chuentragool
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
| | - Aurapat Ngamnithiporn
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
| | - Prachnawadee Hongboon
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center
of Excellence on Environmental Health and Toxicology, Office of the
Permanent Secretary (OPS), Ministry of Higher
Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
3
|
Dong DQ, Tian BL, Yang H, Wei ZH, Yang SH, Zhou MY, Ding CZ, Wang YL, Gao JH, Wang SJ, Yang WC, Liu BT, Wang ZL. Visible light induced palladium-catalyzed reactions involving halogenated hydrocarbon (RX). MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Alkyl Levulinates and 2-Methyltetrahydrofuran: Possible Biomass-Based Solvents in Palladium-Catalyzed Aminocarbonylation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010442. [PMID: 36615634 PMCID: PMC9823927 DOI: 10.3390/molecules28010442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
In this research, ethyl levulinate, methyl levulinate, and 2-methyltetrahydrofuran as bio-derived hemicellulose-based solvents were applied as green alternatives in palladium-catalyzed aminocarbonylation reactions. Iodobenzene and morpholine were used in optimization reactions under different conditions, such as temperatures, pressures, and ligands. It was shown that the XantPhos ligand had a great influence on conversion (98%) and chemoselectivity (100% carboxamide), compared with the monodentate PPh3. Following this study, the optimized conditions were used to extend the scope of substrates with nineteen candidates (various para-, ortho-, and meta-substituted iodobenzene derivatives and iodo-heteroarenes), as well as eight different amine nucleophiles.
Collapse
|
5
|
Mühlfenzl KS, Sardana M, Skrydstrup T, Elmore CS. Visible‐Light Enabled Late‐Stage, Room‐Temperature Aminocarbonylation of Aryl Iodides with Labeled Carbon Monoxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202203582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kim S. Mühlfenzl
- Early Chemical Development Pharmaceutical Sciences AstraZeneca Pepparedsleden 1 431 50 Mölndal Sweden
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Malvika Sardana
- Early Chemical Development Pharmaceutical Sciences AstraZeneca Pepparedsleden 1 431 50 Mölndal Sweden
| | - Troels Skrydstrup
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Charles S. Elmore
- Early Chemical Development Pharmaceutical Sciences AstraZeneca Pepparedsleden 1 431 50 Mölndal Sweden
| |
Collapse
|
6
|
Halder P, Talukdar V, Iqubal A, Das P. Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry. J Org Chem 2022; 87:13965-13979. [PMID: 36217780 DOI: 10.1021/acs.joc.2c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The carbonyl group forms an integral part of several drug molecules and materials; hence, synthesis of carbonylated compounds remains an intriguing area of research for synthetic and medicinal chemists. Handling toxic CO gas has several limitations; thus, using safe and effective techniques for in or ex situ generation of carbon monoxide from nontoxic and cheap precursors is highly desirable. Among several precursors that have been explored for the generation of CO gas, chloroform can prove to be a promising CO surrogate due to its cost-effectiveness and ready availability. However, the one-pot chloroform-based carbonylation reaction requires strong basic conditions for hydrolysis of chloroform that may affect functional group tolerability of substrates and scale-up reactions. These limitations can be overcome by a two-chamber reactor (COware) that can be utilized for ex situ CO generation through hydrolysis of chloroform in one chamber and facilitating safe carbonylation reactions in another chamber under mild conditions. The versatility of this "Chloroform-COware" technique is explored through palladium-catalyzed aminocarbonylation of medicinally relevant heterocyclic cores, viz., isoquinoline and quinoline.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| |
Collapse
|
7
|
Ling J, Bruneau‐Voisine A, Journot G, Evano G. Copper‐Catalyzed Carbonylative Cross‐Coupling of Alkyl Iodides and Amines. Chemistry 2022; 28:e202201356. [DOI: 10.1002/chem.202201356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Johanne Ling
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | | | - Guillaume Journot
- Oril Industrie 13, rue Auguste Desgenétais, CS 60125 76210 Bolbec France
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
8
|
De La Cruz LK, Bauer N, Cachuela A, Tam WS, Tripathi R, Yang X, Wang B. Light-Activated CO Donor as a Universal CO Surrogate for Pd-Catalyzed and Light-Mediated Carbonylation. Org Lett 2022; 24:4902-4907. [PMID: 35786951 DOI: 10.1021/acs.orglett.2c01726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A low-molecular-weight, solid CO surrogate that only requires a low-power LED for activation to release 2 equiv of CO is reported. The surrogate can be universally implemented in various palladium-catalyzed carbonylative transformations. It is also compatible with protocols that employ blue-light to activate conventionally inaccessible substrates such as nonactivated alkyl halides. Furthermore, we demonstrate that the photolabile CO-releasing scaffold can be installed into polymeric materials, thereby creating new materials with CO-releasing capabilities.
Collapse
Affiliation(s)
- Ladie Kimberly De La Cruz
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Nicola Bauer
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Alyssa Cachuela
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Wing Sze Tam
- Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ravi Tripathi
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Binghe Wang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
9
|
Babin V, Taran F, Audisio D. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS AU 2022; 2:1234-1251. [PMID: 35783167 PMCID: PMC9241029 DOI: 10.1021/jacsau.2c00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/04/2023]
Abstract
Carbon-14 (14C) is a gold standard technology routinely utilized in pharmaceutical and agrochemical industries for tracking synthetic organic molecules and providing their metabolic and safety profiles. While the state of the art has been dominated for decades by traditional multistep synthetic approaches, the recent emergence of late-stage carbon isotope labeling has provided new avenues to rapidly access carbon-14-labeled biologically relevant compounds. In particular, the development of carbon isotope exchange has represented a fundamental paradigm change, opening the way to unexplored synthetic transformations. In this Perspective, we discuss the recent developments in the field with a critical assessment of the literature. We subsequently discuss research directions and future challenges within this rapidly evolving field.
Collapse
|
10
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
11
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
12
|
Advances in Visible-Light-Mediated Carbonylative Reactions via Carbon Monoxide (CO) Incorporation. Catalysts 2021. [DOI: 10.3390/catal11080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The abundant and inexpensive carbon monoxide (CO) is widely exploited as a C1 source for the synthesis of both fine and bulk chemicals. In this context, photochemical carbonylation reactions have emerged as a powerful tool for the sustainable synthesis of carbonyl-containing compounds (esters, amides, ketones, etc.). This review aims at giving a general overview on visible light-promoted carbonylation reactions in the presence of metal (Palladium, Iridium, Cobalt, Ruthenium, Copper) and organocatalysts as well, highlighting the main features of the presented protocols and providing useful insights on the reaction mechanisms.
Collapse
|
13
|
Pedersen SS, Donslund AS, Mikkelsen JH, Bakholm OS, Papp F, Jensen KB, Gustafsson MBF, Skrydstrup T. A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry 2021; 27:7114-7123. [PMID: 33452676 DOI: 10.1002/chem.202005261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
A series of pharmaceutically relevant small molecules and biopharmaceuticals bearing aliphatic carboxamides have been successfully labeled with carbon-13. Key to the success of this novel carbon isotope labeling technique is the observation that 13 C-labeled NiII -acyl complexes, formed from a 13 CO insertion step with NiII -alkyl intermediates, rapidly react in less than one minute with 2,2'-dipyridyl disulfide to quantitatively form the corresponding 2-pyridyl thioesters. Either the use of 13 C-SilaCOgen or 13 C-COgen allows for the stoichiometric addition of isotopically labeled carbon monoxide. Subsequent one-pot acylation of a series of structurally diverse amines provides the desired 13 C-labeled carboxamides in good yields. A single electron transfer pathway is proposed between the NiII -acyl complexes and the disulfide providing a reactive NiIII -acyl sulfide intermediate, which rapidly undergoes reductive elimination to the desired thioester. By further optimization of the reaction parameters, reaction times down to only 11 min were identified, opening up the possibility of exploring this chemistry for carbon-11 isotope labeling. Finally, this isotope labeling strategy could be adapted to the synthesis of 13 C-labeled liraglutide and insulin degludec, representing two antidiabetic drugs.
Collapse
Affiliation(s)
- Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jesper H Mikkelsen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Oskar S Bakholm
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Florian Papp
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Magnus B F Gustafsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
14
|
Yang SS, Ren YZ, Guo YY, Du GF, Cai ZH, He L. Organocatalytic aminocarbonylation of α,β-unsaturated ketones with N, N-dimethyl carbamoylsilane. NEW J CHEM 2021. [DOI: 10.1039/d1nj00782c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schwesinger's superbase can efficiently activate the Si–CONMe2 bond and initiate the aminocarbonylation of α,β-unsaturated ketones and N,N-dimethyl carbamoylsilane.
Collapse
Affiliation(s)
- Shou-Shan Yang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Ying-Zheng Ren
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Yu-Yu Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Guang-Fen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Zhi-Hua Cai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan
- School of Chemistry and Chemical Engineering
- Shihezi University
- Xinjiang Uygur Autonomous Region
- People's Republic of China
| |
Collapse
|
15
|
Ren S, Huffman MA, Whittaker AM, Yang H, Nawrat CC, Waterhouse DJ, Maloney KM, Strotman NA. Synthesis of Isotopically Labeled Anti-HIV Nucleoside Islatravir through a One-Pot Biocatalytic Cascade Reaction. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sumei Ren
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark A. Huffman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron M. Whittaker
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hao Yang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christopher C. Nawrat
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David J. Waterhouse
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
16
|
Singh J, Sharma S, Sharma A. Photocatalytic Carbonylation Strategies: A Recent Trend in Organic Synthesis. J Org Chem 2020; 86:24-48. [DOI: 10.1021/acs.joc.0c02205] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Shivani Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
17
|
Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angew Chem Int Ed Engl 2020; 59:18646-18654. [PMID: 32621297 DOI: 10.1002/anie.202006720] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/18/2022]
Abstract
We report a new visible-light-mediated carbonylative amidation of aryl, heteroaryl, and alkyl halides. A tandem catalytic cycle of [Ir(ppy)2 (dtb-bpy)]+ generates a potent iridium photoreductant through a second catalytic cycle in the presence of DIPEA, which productively engages aryl bromides, iodides, and even chlorides as well as primary, secondary, and tertiary alkyl iodides. The versatile in situ generated catalyst is compatible with aliphatic and aromatic amines, shows high functional-group tolerance, and enables the late-stage amidation of complex natural products.
Collapse
Affiliation(s)
- José A Forni
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Nenad Micic
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Timothy U Connell
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Geethika Weragoda
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia.,CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| |
Collapse
|
18
|
Ismael A, Gevorgyan A, Skrydstrup T, Bayer A. Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Aya Ismael
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ashot Gevorgyan
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Annette Bayer
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
19
|
Forni JA, Micic N, Connell TU, Weragoda G, Polyzos A. Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- José A. Forni
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
| | - Nenad Micic
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
| | | | | | - Anastasios Polyzos
- School of Chemistry The University of Melbourne Melbourne Victoria 3010 Australia
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| |
Collapse
|
20
|
Cartier A, Levernier E, Dhimane A, Fukuyama T, Ollivier C, Ryu I, Fensterbank L. Synthesis of Aliphatic Amides through a Photoredox Catalyzed Radical Carbonylation Involving Organosilicates as Alkyl Radical Precursors. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000314] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alex Cartier
- Department of Chemistry, Graduate School of ScienceOsaka Prefecture University, Sakai Osaka 599-8531 Japan
| | - Etienne Levernier
- Sorbonne Université, CNRSInstitut Parisien de Chimie Moléculaire 4 place Jussieu, CC 229 F-52252 Paris cedex 05, Paris France
| | - Anne‐Lise Dhimane
- Sorbonne Université, CNRSInstitut Parisien de Chimie Moléculaire 4 place Jussieu, CC 229 F-52252 Paris cedex 05, Paris France
| | - Takahide Fukuyama
- Department of Chemistry, Graduate School of ScienceOsaka Prefecture University, Sakai Osaka 599-8531 Japan
| | - Cyril Ollivier
- Sorbonne Université, CNRSInstitut Parisien de Chimie Moléculaire 4 place Jussieu, CC 229 F-52252 Paris cedex 05, Paris France
| | - Ilhyong Ryu
- Department of Chemistry, Graduate School of ScienceOsaka Prefecture University, Sakai Osaka 599-8531 Japan
- Department of Applied ChemistryNational Chiao Tung University Hsinchu Taiwan
| | - Louis Fensterbank
- Sorbonne Université, CNRSInstitut Parisien de Chimie Moléculaire 4 place Jussieu, CC 229 F-52252 Paris cedex 05, Paris France
| |
Collapse
|