1
|
Huang AX, Li R, Lv QY, Yu B. Photocatalytic Sulfonylation: Innovations and Applications. Chemistry 2024; 30:e202402416. [PMID: 39003604 DOI: 10.1002/chem.202402416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Photosynthesis, converting sustainable solar energy into chemical energy, has emerged as a promising craft to achieve diverse organic transformations due to its mild reaction conditions, sustainability, and high efficiency. The synthesis of sulfonated compounds has drawn significant attention in the pharmaceuticals, agrochemicals, and materials industries due to the unique structure and electronic properties of the sulfonyl groups. Over the past decades, many photocatalytic sulfonylation reactions have been developed. In this review, the recent advances in photocatalyzed sulfonylation have been reviewed since 2020, with a primary focus on discussing reaction design and mechanism.
Collapse
Affiliation(s)
- An-Xiang Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Qi-Yan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Prasad V, Ranga Rao V, Gangadhar M, Nechipadappu SK, Adiyala PR. Regioselective Radical Cascade Cyclizations of Alkyne-Tethered Cyclohexadienones with Chalcogenides under Visible-Light Catalysis. ACS OMEGA 2023; 8:35809-35821. [PMID: 37810637 PMCID: PMC10552108 DOI: 10.1021/acsomega.3c03362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Herein, we demonstrated a silver/K2S2O8-mediated highly regio- and diastereoselective 6/5-exo trig radical cascade cyclization of alkyne-tethered cyclohexadienones with sulfonyl hydrazides or sodium sulfinates and subsequent selenation to access 6,6-dihydrochromenone and 6,5-fused tetrahydro benzofuranone derivatives. This reaction protocol features high functional group compatibility and has a wide substrate scope providing a variety of dihydrochromenones and tetrahydro benzofuranone derivatives in good to excellent yields. The reaction proceeds via the attack of a sulfonyl radical to alkyne over the activated Michael acceptor. The TEMPO quenching experiment implies the presence of a radical intermediate. Further synthetic versatility of 6,6- and 5,6-fused derivatives is also showcased.
Collapse
Affiliation(s)
- Vadla
Shiva Prasad
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vadithya Ranga Rao
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maram Gangadhar
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Kumar Nechipadappu
- Laboratory
of X-Ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Reddy Adiyala
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Jiang HM, Zhao YL, Sun Q, Ouyang XH, Li JH. Recent Advances in N-O Bond Cleavage of Oximes and Hydroxylamines to Construct N-Heterocycle. Molecules 2023; 28:molecules28041775. [PMID: 36838760 PMCID: PMC9964420 DOI: 10.3390/molecules28041775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Oximes and hydroxylamines are a very important class of skeletons that not only widely exist in natural products and drug molecules, but also a class of synthon, which have been widely used in industrial production. Due to weak N-O σ bonds of oximes and hydroxylamines, they can be easily transformed into other functional groups by N-O bond cleavage. Therefore, the synthesis of N-heterocycle by using oximes and hydroxylamines as nitrogen sources has attracted wide attention. Recent advances for the synthesis of N-heterocycle through transition-metal-catalyzed and radical-mediated cyclization classified by the type of nitrogen sources and rings are summarized. In this paper, the recent advances in the N-O bond cleavage of oximes and hydroxylamines are reviewed. We hope that this review provides a new perspective on this field, and also provides a reference to develop environmentally friendly and sustainable methods.
Collapse
Affiliation(s)
- Hui-Min Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yi-Lin Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| | - Jin-Heng Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Correspondence: (X.-H.O.); (J.-H.L.)
| |
Collapse
|
4
|
Ruan HL, Deng YX, Li ZJ, Zhao SY. Copper(I)-Catalyzed Three-Component Selenosulfonation of Maleimides with Sulfonyl Hydrazides and Diselenides via Radical Relay. J Org Chem 2022; 87:15661-15669. [PMID: 36317696 DOI: 10.1021/acs.joc.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
By employing Cu(CH3CN)4PF6 as the catalyst and tert-butyl hydroperoxide as the oxidant, we realized a three-component radical selenosulfonation of substituted maleimides, sulfonyl hydrazides, and diphenyl diselenides, providing a series of 3,4-selenosulfonylated succinimides in moderate to good yields. This reaction features broad substrate scopes, high functional-group tolerability, and feasibility of gram-scale synthesis, enabling one-step construction of C-SO2 and C-Se bonds under mild reaction conditions. Preliminary mechanistic studies support the free-radical-induced pathway.
Collapse
Affiliation(s)
- Hong-Li Ruan
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Yun-Xia Deng
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Zi-Jing Li
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Zhou Z, Liu Q, Huang Z, Zhao Y. A Bi(OTf) 3-Promoted Hydrosulfonylation of Alkenes with Sulfonyl Hydrazides: An Approach to Branched Sulfones. Org Lett 2022; 24:4433-4437. [PMID: 35678549 DOI: 10.1021/acs.orglett.2c01657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Bi(OTf)3-promoted hydrosulfonylation of alkenes with sulfonyl hydrazides to produce branched sulfones is reported, in which various branched sulfones (>40 examples) have been prepared in moderate to good yields. The gram-scale reaction and synthesis of the experimental inhibitor precursor showed the potential application. A preliminary mechanistic study revealed that double-bond migration to form the α,β-conjugated alkene is crucial for this transformation.
Collapse
Affiliation(s)
- Zheng Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qianqian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
6
|
Xu Z, Geng X, Cai Y, Wang L. A Straightforward Approach to Fluorinated Pyrimido[1,2- b]indazole Derivatives via Metal/Additive-Free Annulation with Enaminones, 3-Aminoindazoles, and Selectfluor. J Org Chem 2022; 87:6562-6572. [PMID: 35486919 DOI: 10.1021/acs.joc.2c00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel and efficient three-component reaction with two C-N bonds and one C-F bond formation has been reported, which provides a straightforward route to a variety of fluorinated pyrimido[1,2-b]indazole derivatives. This transformation has the advantage of excellent functional group compatibility, including aliphatic and aromatic substituents enaminones. Moreover, metal and additives are not necessary for this reaction, which is of great significance for the synthesis and application of fluorinated heterocycles.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Yiwen Cai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, PR China.,Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, PR China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, PR China
| |
Collapse
|
7
|
Wang L, Li L, Gao Y, Mingli S, Liu J, Li P. Visible‐light‐induced site‐selective difunctionalization of 2,3‐dihydrofuran with quinoxalin‐2(1H)‐ones and peroxides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Wang
- Huaibei Normal University Chemistry 100 Dongshan Road 235000 Huaibei CHINA
| | - Laiqiang Li
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Sun Mingli
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Chemistry Huaibei CHINA
| | - Pinhua Li
- Huaibei Normal University Chemistry Huaibei CHINA
| |
Collapse
|
8
|
Visible-light-induced novel cyclization of 2-(2-(arylethynyl)benzylidene)-malononitrile derivatives with 2,6-di(tert-butyl)-4-methylphenol to bridged spirocyclic compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Ruan HL, Ma YL, Man KX, Zhao SY. Transition-Metal-Free Radical-Triggered Hydrosulfonylation and Disulfonylation Reaction of Substituted Maleimides with Sulfonyl Hydrazides. J Org Chem 2022; 87:3762-3769. [PMID: 35168325 DOI: 10.1021/acs.joc.1c02816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A convenient and practical hydrosulfonylation and disulfonylation of substituted maleimides was realized using sulfonyl hydrazides as the sulfur reagent and tert-butyl hydroperoxide as the oxidant. The advantages of the reactions include mild and transition-metal-free reaction conditions, good functional group tolerance, and readily available starting materials. The radical species-induced pathway is also demonstrated by mechanistic studies.
Collapse
Affiliation(s)
- Hong-Li Ruan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Yi-Lin Ma
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Ke-Xin Man
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
10
|
Wang N, Wang D, He Y, Xi J, Wang T, Liang Y, Zhang Z. Photoinduced annulation of N‐phenylbenzamides for the synthesis phenanthridin‐6(5H)‐ones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Jin Xi
- Shaanxi Normal University CHINA
| | | | - Yong Liang
- Beckman Research Institute UNITED STATES
| | | |
Collapse
|
11
|
Dabaria KK, Bai R, Jat PK, Badsara SS. Atom-Economical, Catalyst-Free Hydrosulfonation of Densely Functionalized Alkenes: Access to Oxindole Containing Sulfones. NEW J CHEM 2022. [DOI: 10.1039/d2nj02462d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An atom-economical hydrosulfonation of densely functionalized alkenes under catalyst-free conditions is described. Alkenes possessing hydroxy-oxindole moiety underwent hydrosulfonation on treatment with arylsulfinic acids in green media to afford the resulting...
Collapse
|
12
|
Pan Z, Liu T, Ma Y, Yan J, Wang YJ. Construction of Quinazolin(thi)ones by Brønsted Acid/Visible-Light Photoredox Relay Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Wei W, Zhong Y, Feng Y, Gao L, Tang H, Pan Y, Ma X, Mo Z. Electrochemically Mediated Direct C(
sp
3
)−H Sulfonylation of Xanthene Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wan‐Jie Wei
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Yu‐Jing Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yu‐Feng Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Lei Gao
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Xian‐Li Ma
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541199 People's Republic of China
| |
Collapse
|
14
|
Xu Z, Hu Y, Wang L, Sun M, Li P. Merging cobalt and photoredox catalysis for the C8-H alkoxylation of 1-naphthylamine derivatives with alcohols. Org Biomol Chem 2021; 19:10112-10119. [PMID: 34757369 DOI: 10.1039/d1ob01721g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined cobalt and photoredox catalysis system to realize the C8-H alkoxylation of 1-naphthylamine derivatives with alcohols was developed. Using commercially available alkyl alcohols as raw materials and Co(OAc)2 and rose bengal as catalysts, 1-naphthylamine derivatives reacted with alcohols to generate the corresponding C8-H alkoxylation products in good yields.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Yu Hu
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China.
| | - Lei Wang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Mingli Sun
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Pinhua Li
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Department of Chemistry, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
15
|
Gong B, Zhu H, Liu Y, Li Q, Yang L, Wu G, Fan Q, Xie Z, Le Z. Palladium-catalyzed sulfonylative coupling of benzyl(allyl) carbonates with arylsulfonyl hydrazides. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
16
|
Liu T, Shen X, Liu Z, Shi R, Wei W, Xu Y, Cheng F. An Unexpected C‐S Bond Transformation with High Chemoselectivity for the Synthesis of Aryl‐Benzyl Sulfones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Teng Liu
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Zining Liu
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Rong Shi
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Wen Wei
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Yanli Xu
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 P. R. China
| |
Collapse
|
17
|
Kulthe AD, Mainkar PS, Akondi SM. Intermolecular trifluoromethyl-alkenylation of alkenes enabled by metal-free photoredox catalysis. Chem Commun (Camb) 2021; 57:5582-5585. [PMID: 33969856 DOI: 10.1039/d1cc01806j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-component and redox-neutral trifluoromethylative alkenylation of unactivated alkenes with β-nitrostyrenes has been developed under visible-light. This metal-free protocol utilizes the easy to handle Langlois reagent (CF3SO2Na) as the CF3 source and is suitable for various unactivated alkenes and β-nitrostyrenes, affording a series of trifluoromethylated aromatic alkenes under mild conditions in good to excellent yields.
Collapse
Affiliation(s)
- Arun D Kulthe
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Yadav D, Srivastava A, Ansari MA, Singh MS. Unusual Behavior of Ketoximes: Reagentless Photochemical Pathway to Alkynyl Sulfides. J Org Chem 2021; 86:5908-5921. [PMID: 33821649 DOI: 10.1021/acs.joc.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The unique properties of ketoximes are used prominently for the synthesis of heterocycles. In contrast, their potential to absorb light and photoelectron transfer processes remains challenging. Widespread interest in controlling direct excitation of ketoxime tacticity unlocks unconventional reaction pathways, enabling photochemical intramolecular skeletal modification to constitute alkynyl sulfides that cannot be realized via traditional activation. Despite decades of advancements, the alkynyl sulfides, particularly those composed of polar functionalities and derived from renewable sources, remain unknown. These findings demonstrate the importance of decelerated ketoxime from β-oxodithioester for the identification of reaction conditions. The method uses mild reaction conditions to generate excited-state photoreductant for the functionalization of an array of alkynyl sulfides. Additionally, a fundamental understanding of elementary steps using electrochemical and spectroscopic techniques/experiments revealed a PCET pathway to this transformation, while the involved substrates and their properties with improved economical tools indicated the translational potential of this method.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Abhijeet Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
19
|
Joseph D, Idris MA, Chen J, Lee S. Recent Advances in the Catalytic Synthesis of Arylsulfonyl Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05690] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muhammad Aliyu Idris
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiajia Chen
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang Province 325035, People’s Republic of China
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
20
|
Yu W, Wang P, Xu K, Li H. Iron‐Promoted Radical Cyclization of β, γ‐Unsaturated Oximes: Dual Role of Iron(III) Nitrate as a Promoter and Nitrooxy Source. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and Application Ministry of Education; School of Chemistry and Material Science, Huaibei Normal University Huaibei, Anhui 235000 P. R. China
| | - Pei‐Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Application Ministry of Education; School of Chemistry and Material Science, Huaibei Normal University Huaibei, Anhui 235000 P. R. China
- Information College Huaibei Normal University Huaibei 235000 P. R. China
| | - Ke Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Application Ministry of Education; School of Chemistry and Material Science, Huaibei Normal University Huaibei, Anhui 235000 P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Application Ministry of Education; School of Chemistry and Material Science, Huaibei Normal University Huaibei, Anhui 235000 P. R. China
| |
Collapse
|
21
|
Wang F, Qin J, Zhu S, Chu L. Organic-photoredox-catalyzed three-component sulfonylative pyridylation of styrenes. RSC Adv 2021; 11:142-146. [PMID: 35423008 PMCID: PMC8691066 DOI: 10.1039/d0ra10180j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
An efficient, metal-free protocol for the three-component sulfonylative pyridylation of styrenes via organic-photoredox catalysis is described. This metal-free process enables the direct and selective installation of sulfonyl and heteroaryl motifs and tolerates a wide array of functional groups as well as complex molecular scaffolds, that could complement previous methods and would be of interest in pharmaceutical research. An efficient, metal-free protocol for the three-component sulfonylative pyridylation of alkenes via organic-photoredox catalysis is described.![]()
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Center for Advanced Low-Dimension Materials
- College of Chemistry, Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
22
|
Chen X, Xiao F, He WM. Recent developments in the difunctionalization of alkenes with C–N bond formation. Org Chem Front 2021. [DOI: 10.1039/d1qo00375e] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various alkene difunctionalization reactions involving nitridization, diamination, azidation, oxyamination, carboamination, aminohalogenation, and nitration are introduced in this review.
Collapse
Affiliation(s)
- Xiang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
23
|
Zhang W, Bu J, Wang L, Li P, Li H. Sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes: an approach toward the carbazole skeleton. Org Chem Front 2021. [DOI: 10.1039/d1qo00739d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A mild sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes has been established for the construction of the carbazole backbone.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Jiahui Bu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|
24
|
Wu Z, Hao S, Hu J, Shen H, Lai M, Liu P, Xi G, Wang P, Zhao S, Zhang X, Zhao M. Copper‐Catalyzed Decarboxylative Reductive Sulfonylation of α‐Oxocarboxylic Acids with Aryl Sulfonyl Hydrazines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiyong Wu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Shuai Hao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Jingyan Hu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Hongtao Shen
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Miao Lai
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Pengfei Liu
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Gaolei Xi
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Pengfei Wang
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Shengchen Zhao
- Technology Center China Tobacco Henan Industrial Co., Ltd. 9, 3th Jingkai Avenue Zhengzhou 450000 Henan P. R. China
| | - Xiaoping Zhang
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| | - Mingqin Zhao
- College of Tobacco Science Flavors and Fragrance Engineering & Technology Research Center of Henan Province Henan Agricultural University 95, Wenhua Road Zhengzhou 450002 P. R. China
| |
Collapse
|
25
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
26
|
Yu W, Yang S, Wang PL, Li P, Li H. BF 3·OEt 2-mediated cyclization of β,γ-unsaturated oximes and hydrazones with N-(arylthio/arylseleno)succinimides: an efficient approach to synthesize isoxazoles or dihydropyrazoles. Org Biomol Chem 2020; 18:7165-7173. [PMID: 32966513 DOI: 10.1039/d0ob01388a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly efficient BF3·OEt2-mediated cyclization of β,γ-unsaturated oximes and tosylhydrazones with N-(arylthio/arylseleno)succinimides has been established for the construction of N-heterocycles in a one-step manner. This metal-free cyclization provides direct access to isoxazoles and dihydropyrazoles in good to excellent yields at room temperature. The mechanistic experiments support the formation of a cationic species PhS+ which plays a critical role in this cyclization process.
Collapse
Affiliation(s)
- Wei Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Shichao Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Pei-Long Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China. and Information College, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China.
| |
Collapse
|
27
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
28
|
Krylov IB, Paveliev SA, Budnikov AS, Terent’ev AO. Oxime radicals: generation, properties and application in organic synthesis. Beilstein J Org Chem 2020; 16:1234-1276. [PMID: 32550935 PMCID: PMC7277713 DOI: 10.3762/bjoc.16.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
N-Oxyl radicals (compounds with an N-O• fragment) represent one of the richest families of stable and persistent organic radicals with applications ranging from catalysis of selective oxidation processes and mechanistic studies to production of polymers, energy storage, magnetic materials design and spectroscopic studies of biological objects. Compared to other N-oxyl radicals, oxime radicals (or iminoxyl radicals) have been underestimated for a long time as useful intermediates for organic synthesis, despite the fact that their precursors, oximes, are extremely widespread and easily available organic compounds. Furthermore, oxime radicals are structurally exceptional. In these radicals, the N-O• fragment is connected to an organic moiety by a double bond, whereas all other classes of N-oxyl radicals contain an R2N-O• fragment with two single C-N bonds. Although oxime radicals have been known since 1964, their broad synthetic potential was not recognized until the last decade, when numerous selective reactions of oxidative cyclization, functionalization, and coupling mediated by iminoxyl radicals were discovered. This review is focused on the synthetic methods based on iminoxyl radicals developed in the last ten years and also contains some selected data on previous works regarding generation, structure, stability, and spectral properties of these N-oxyl radicals. The reactions of oxime radicals are classified into intermolecular (oxidation by oxime radicals, oxidative C-O coupling) and intramolecular. The majority of works are devoted to intramolecular reactions of oxime radicals. These reactions are classified into cyclizations involving C-H bond cleavage and cyclizations involving a double C=C bond cleavage.
Collapse
Affiliation(s)
- Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
29
|
Zheng Y, You Y, Shen Q, Zhang J, Liu L, Duan XH. Visible-light-induced anti-Markovnikov hydrosulfonation of styrene derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo00497a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A visible-light-induced anti-Morkovnikov hydrosulfonation reaction of styrene derivatives with sodium sulfinates has been developed, featuring mild reaction conditions, good functional-group tolerance, good yields and high regioselectivity.
Collapse
Affiliation(s)
- Yinan Zheng
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Ying You
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Qianqian Shen
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Junjie Zhang
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Le Liu
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xin-Hua Duan
- School of Chemistry
- Xi'an Key Laboratory of Sustainable Energy Material Chemistry
- and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
30
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|