Mauksch M, Tsogoeva SB. Disclosure of Ground-State Zimmerman-Möbius Aromaticity in the Radical Anion of [6]Helicene and Evidence for 4π Periodic Aromatic Ring Currents in a Molecular "Metallic" Möbius Strip.
Chemistry 2021;
27:14660-14671. [PMID:
34375466 PMCID:
PMC8596793 DOI:
10.1002/chem.202102230]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/19/2022]
Abstract
In 1966, Zimmerman proposed a type of Möbius aromaticity that involves through-space electron delocalization; it has since been widely applied to explain reactivity in pericyclic reactions, but is considered to be limited to transition-state structures. Although the easily accessible hexahelicene radical anion has been known for more than half a century, it was overlooked that it exhibits a ground-state minimum and robust Zimmerman-Möbius aromaticity in its central noose-like opening, becoming, hence, the oldest existing Möbius aromatic system and with smallest Möbius cycle known. Despite its overall aromatic stabilization energy of 13.6 kcal mol-1 (at B3LYP/6-311+G**), the radical also features a strong, globally induced paramagnetic ring current along its outer edge. Exclusive global paramagnetic currents can also be found in other fully delocalized radical anions of 4N+2 π-electron aromatic polycyclic benzenoid hydrocarbons (PAH), thus questioning the established magnetic criterion of antiaromaticity. As an example of a PAH with nontrivial topology, we studied a novel Möbius[16]cyclacene that has a non-orientable surface manifold and a stable closed-shell singlet ground state at several density functional theory levels. Its metallic monoanion radical (0.0095 eV band gap at HSE06/6-31G* level) is also wave-function stable and displays an unusual 4π-periodic, magnetically induced ring current (reminiscent of the transformation behaviour of spinors under spatial rotation), thus indicating the existence of a new, Hückel-rule-evading type of aromaticity.
Collapse