1
|
DeCecco AC, Conrad AR, Floyd AM, Jasper AW, Hansen N, Dagaut P, Moody NE, Popolan-Vaida DM. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde. Phys Chem Chem Phys 2024; 26:22319-22336. [PMID: 38980126 DOI: 10.1039/d4cp01942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The reaction of unsaturated compounds with ozone (O3) is recognized to lead to the formation of Criegee intermediates (CIs), which play a key role in controlling the atmospheric budget of hydroxyl radicals and secondary organic aerosols. The reaction network of two CIs with different functionality, i.e. acetaldehyde oxide (CH3CHOO) and glyoxal oxide (CHOCHOO) formed in the ozone-assisted oxidation reaction of crotanaldehyde (CA), is investigated over a temperature range between 390 K and 840 K in an atmospheric pressure jet-stirred reactor (JSR) at a residence time of 1.3 s, stoichiometry of 0.5 with a mixture of 1% crotonaldehyde, 10% O2, at an fixed ozone concentration of 1000 ppm and 89% Ar dilution. Molecular-beam mass spectrometry in conjunction with single photon tunable synchrotron vacuum-ultraviolet (VUV) radiation is used to identify elusive intermediates by means of experimental photoionization energy scans and ab initio threshold energy calculations for isomer identification. Addition of ozone (1000 ppm) is observed to trigger the oxidation of CA already at 390 K, which is below the temperature where the oxidation reaction of CA was observed in the absence of ozone. The observed CA + O3 product, C4H6O4, is found to be linked to a ketohydroperoxide (2-hydroperoxy-3-oxobutanal) resulting from the isomerization of the primary ozonide. Products corresponding to the CIs uni- and bi-molecular reactions were observed and identified. A network of CI reactions is identified in the temperature region below 600 K, characterized by CIs bimolecular reactions with species like aldehydes, i.e., formaldehyde, acetaldehyde, and crotonaldehyde and alkenes, i.e., ethene and propene. The region below 600 K is also characterized by the formation of important amounts of typical low-temperature oxidation products, such as hydrogen peroxide (H2O2), methyl hydroperoxide (CH3OOH), and ethyl hydroperoxide (C2H5OOH). Detection of additional oxygenated species such as alcohols, ketene, and aldehydes are indicative of multiple active oxidation routes. This study provides important information about the initial step involved in the CIs assisted oligomerization reactions in complex reactive environments where CIs with different functionalities are reacting simultaneously. It provides new mechanistic insights into ozone-assisted oxidation reactions of unsaturated aldehydes, which is critical for the development of improved atmospheric and combustion kinetics models.
Collapse
Affiliation(s)
- Alec C DeCecco
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Alan R Conrad
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Arden M Floyd
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | - Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Philippe Dagaut
- Centre National de la Recherche Scientifique (CNRS), ICARE, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
| | - Nath-Eddy Moody
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
2
|
Smith Lewin C, Kumar A, Herbinet O, Arnoux P, Asgher R, Barua S, Battin-Leclerc F, Farhoudian S, Garcia GA, Tran LS, Vanhove G, Nahon L, Rissanen M, Bourgalais J. 1-Hexene Ozonolysis across Atmospheric and Combustion Temperatures via Synchrotron-Based Photoelectron Spectroscopy and Chemical Ionization Mass Spectrometry. J Phys Chem A 2024; 128:5374-5385. [PMID: 38917032 DOI: 10.1021/acs.jpca.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This study investigates the complex interaction between ozone and the autoxidation of 1-hexene over a wide temperature range (300-800 K), overlapping atmospheric and combustion regimes. It is found that atmospheric molecular mechanisms initiate the oxidation of 1-hexene from room temperature up to combustion temperatures, leading to the formation of highly oxygenated organic molecules. As temperature rises, the highly oxygenated organic molecules contribute to radical-branching decomposition pathways inducing a high reactivity in the low-temperature combustion region, i.e., from 550 K. Above 650 K, the thermal decomposition of ozone into oxygen atoms becomes the dominant process, and a remarkable enhancement of the conversion is observed due to their diradical nature, counteracting the significant negative temperature coefficient behavior usually observed for 1-hexene. In order to better characterize the formation of heavy oxygenated organic molecules at the lowest temperatures, two analytical performance methods have been combined for the first time: synchrotron-based mass-selected photoelectron spectroscopy and orbitrap chemical ionization mass spectrometry. At the lowest studied temperatures (below 400 K), this analytical work has demonstrated the formation of the ketohydroperoxides usually found during the LTC oxidation of 1-hexene, as well as of molecules containing up to nine O atoms.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | | | - Rabbia Asgher
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Shawon Barua
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | | | - Sana Farhoudian
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Luc-Sy Tran
- PC2A, Université Lille, CNRS, F-59000 Lille, France
| | | | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette Cedex, France
| | - Matti Rissanen
- Aerosol Physics Laboratory, Tampere University, FI-33101 Tampere, Finland
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | | |
Collapse
|
3
|
He X, Li M, Shu B, Fernandes R, Moshammer K. Exploring the Effect of Different Reactivity Promoters on the Oxidation of Ammonia in a Jet-Stirred Reactor. J Phys Chem A 2023; 127:1923-1940. [PMID: 36800895 DOI: 10.1021/acs.jpca.2c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The low reactivity of ammonia (NH3) is the main barrier to applying neat NH3 as fuel in technical applications, such as internal combustion engines and gas turbines. Introducing combustion promoters as additives in NH3-based fuel can be a feasible solution. In this work, the oxidation of ammonia by adding different reactivity promoters, i.e., hydrogen (H2), methane (CH4), and methanol (CH3OH), was investigated in a jet-stirred reactor (JSR) at temperatures between 700 and 1200 K and at a pressure of 1 bar. The effect of ozone (O3) was also studied, starting from an extremely low temperature (450 K). Species mole fraction profiles as a function of the temperature were measured by molecular-beam mass spectrometry (MBMS). With the help of the promoters, NH3 consumption can be triggered at lower temperatures than in the neat NH3 case. CH3OH has the most prominent effect on enhancing the reactivity, followed by H2 and CH4. Furthermore, two-stage NH3 consumption was observed in NH3/CH3OH blends, whereas no such phenomenon was found by adding H2 or CH4. The mechanism constructed in this work can reasonably reproduce the promoting effect of the additives on NH3 oxidation. The cyanide chemistry is validated by the measurement of HCN and HNCO. The reaction CH2O + NH2 ⇄ HCO + NH3 is responsible for the underestimation of CH2O in NH3/CH4 fuel blends. The discrepancies observed in the modeling of NH3 fuel blends are mainly due to the deviations in the neat NH3 case. The total rate coefficient and the branching ratio of NH2 + HO2 are still controversial. The high branching fraction of the chain-propagating channel NH2 + HO2 ⇄ H2NO + OH improves the model performance under low-pressure JSR conditions for neat NH3 but overestimates the reactivity for NH3 fuel blends. Based on this mechanism, the reaction pathway and rate of production analyses were conducted. The HONO-related reaction routine was found to be activated uniquely by adding CH3OH, which enhances the reactivity most significantly. It was observed from the experiment that adding ozone to the oxidant can effectively initiate NH3 consumption at temperatures below 450 K but unexpectedly inhibit the NH3 consumption at temperatures higher than 900 K. The preliminary mechanism reveals that adding the elementary reactions between NH3-related species and O3 is effective for improving the model performance, but their rate coefficients have to be refined.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Mengdi Li
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Bo Shu
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Ravi Fernandes
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| | - Kai Moshammer
- Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
| |
Collapse
|
4
|
Burger CM, Zhang AJ, Xu Y, Hansen N, Ju Y. Plasma-Assisted Chemical-Looping Combustion: Low-Temperature Methane and Ethylene Oxidation with Nickel Oxide. J Phys Chem A 2023; 127:789-798. [PMID: 36648424 DOI: 10.1021/acs.jpca.2c07184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The chemical reaction network of low-temperature plasma-assisted oxidation of methane (CH4) and ethylene (C2H4) with nickel oxide (NiO) was investigated in a heated plasma reactor through time-dependent species measurements by electron-ionization molecular beam mass spectrometry (EI-MBMS). Methane (ethylene) oxidation by NiO was explored in temperature ranges from 300-700 °C (300-500 °C) and 300-800 °C (300-600 °C) for the plasma and nonplasma conditions. Significant enhancement of methane oxidation was observed with plasma between 400 and 500 °C, where no oxidation was observed under nonplasma conditions. For the oxidation of methane at higher temperatures, three different oxidation stages were observed: (I) a period of complete oxidation, (II) a period of incomplete CO oxidation, and (III) a period of carbon buildup. For the C2H4 experiments, and unlike the CH4 experiments, the plasma resulted in a significant amount of new intermediate oxygenated species, such as CH2O, CH3OH, C2H4O, and C2H6O. Carbon deposits were observed under both methane and ethylene conditions and verified by X-ray photoelectron spectroscopy (XPS). ReaxFF (reactive force field) simulations were performed for the oxidation of CH4 and C2H4 in a nonplasma environment. The simulated intermediates and products largely agree with the species measured in the experiments, though the predicted intermediate oxygenated species such as CH2O and C2H6O were not observed in experiments under nonplasma conditions. A reaction pathway analysis for CH4 and C2H4 reacting with NiO was created based on the observed species from the MBMS spectra along with ReaxFF simulations.
Collapse
Affiliation(s)
- Christopher M Burger
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Angie J Zhang
- Combustion Research Facility and Plasma Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Yijie Xu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| | - Nils Hansen
- Combustion Research Facility and Plasma Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, United States
| |
Collapse
|