1
|
Wei R, Rao Y, Venkatesh A, Emsley L. Solid Effect Dynamic Nuclear Polarization Enhancement of >500 at 9.4 T. J Phys Chem Lett 2024; 15:12408-12415. [PMID: 39656937 DOI: 10.1021/acs.jpclett.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Efficient polarizing agents for dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) NMR spectroscopy are of high current interest due to the potential to significantly boost NMR sensitivity. While most efforts have centered on cross-effect (CE) or Overhauser effect (OE) mechanisms, yielding enhancement factors up to ∼300 at 9.4 T, radicals yielding solid effect (SE) DNP have seen less development. Here we model the comparative performance of OE and SE mechanisms and then measure 1H enhancement factors up to 500 from 1,3-bisdiphenylene-2-phenylallyl (BDPA) in an ortho-terphenyl (OTP) matrix at 9.4 T, 100 K, achieved via increased microwave power across the sample volume. The measured SE and OE performances are in good agreement with the predictions. We note that both the experimental and theoretical analyses indicate that SE DNP remains saturation limited, particularly at elevated temperatures, and we envisage that further improvements in microwave power will further increase SE DNP enhancement factors.
Collapse
Affiliation(s)
- Ran Wei
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yu Rao
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Mardini M, George C, Palani RS, Du X, Tan KO, Sergeyev I, Liu Y, Griffin RG. Proton hyperfine couplings and Overhauser DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 369:107797. [PMID: 39566367 DOI: 10.1016/j.jmr.2024.107797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
We have prepared trityl radicals with protons at the positions of the -COOH group in the phenyl rings and examined their EPR spectra, which show large - hyperfine couplings, and their dynamic nuclear polarization (DNP) Zeeman field profiles . By assessing these polarizing agents for high-field and Overhauser effect DNP, we gain insight into the roles that these hyperfine couplings and other molecular properties play in the DNP performance of these radicals. Interestingly, we do not observe OE DNP in any of the three molecules we examined. This suggests that hyperfine couplings by themselves are not sufficient to support OE DNP. In this case the electron spin density is ∼75 % localized on the central carbon atom rather than being distributed uniformly over the aromatic rings. This is in contrast to BDPA where the distribution is delocalized. Our findings do not suggest that any of these radicals are particularly well-suited to high-field DNP. Furthermore, we emphasize that polarizing agents can be extremely sensitive to their solvent environment, even obscuring the intrinsic magnetic properties of the radical.
Collapse
Affiliation(s)
- Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christy George
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xizi Du
- Department of Medicinal Chemistry, Tianjin Medical University, Tianjin 300070, China
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Yangping Liu
- Department of Medicinal Chemistry, Tianjin Medical University, Tianjin 300070, China
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Tobar C, Albanese K, Chaklashiya R, Equbal A, Hawker C, Han S. Multi Electron Spin Cluster Enabled Dynamic Nuclear Polarization with Sulfonated BDPA. J Phys Chem Lett 2023; 14:11640-11650. [PMID: 38108283 DOI: 10.1021/acs.jpclett.3c02428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dynamic nuclear polarization (DNP) can amplify the solid-state nuclear magnetic resonance (NMR) signal by several orders of magnitude. The mechanism of DNP utilizing α,γ-bisdiphenylene-β-phenylallyl (BDPA) variants as Polarizing Agents (PA) has been the subject of lively discussions on account of their remarkable DNP efficiency with low demand for microwave power. We propose that electron spin clustering of sulfonated BDPA is responsible for its DNP performance, as revealed by the temperature-dependent shape of the central DNP profile and strong electron-electron (e-e) crosstalk seen by Electron Double Resonance. We demonstrate that a multielectron spin cluster can be modeled with three coupled spins, where electron J (exchange) coupling between one of the e-e pairs matching the NMR Larmor frequency induces the experimentally observed absorptive central DNP profile, and the electron T1e modulated by temperature and magic-angle spinning alters the shape between an absorptive and dispersive feature. Understanding the microscopic origin is key to designing new PAs to harness the microwave-power-efficient DNP effect observed with BDPA variants.
Collapse
Affiliation(s)
- Celeste Tobar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106, California, United States
| | - Kaitlin Albanese
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Raj Chaklashiya
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Asif Equbal
- Department of Chemistry, NYU Abu Dhabi, Saadiyat Campus, PO Box 129188, Abu Dhabi 00000, United Arab Emirates
| | - Craig Hawker
- Materials Department, University of California, Santa Barbara 93106, California, United States
| | - Songi Han
- Department of Chemistry, Northwestern University, Evanston 60208, Illinois, United States
| |
Collapse
|
5
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
6
|
Perras FA, Matsuki Y, Southern SA, Dubroca T, Flesariu DF, Van Tol J, Constantinides CP, Koutentis PA. Mechanistic origins of methyl-driven Overhauser DNP. J Chem Phys 2023; 158:154201. [PMID: 37093991 DOI: 10.1063/5.0149664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
The Overhauser effect in the dynamic nuclear polarization (DNP) of non-conducting solids has drawn much attention due to the potential for efficient high-field DNP as well as a general interest in the underlying principles that enable the Overhauser effect in small molecules. We recently reported the observation of 1H and 2H Overhauser effects in H3C- or D3C-functionalized Blatter radical analogs, which we presumed to be caused by methyl rotation. In this work, we look at the mechanism for methyl-driven Overhauser DNP in greater detail, considering methyl librations and tunneling in addition to classical rotation. We predict the temperature dependence of these mechanisms using density functional theory and spin dynamics simulations. Comparisons with results from ultralow-temperature magic angle spinning-DNP experiments revealed that cross-relaxation at temperatures above 60 K originates from both libration and rotation, while librations dominate at lower temperatures. Due to the zero-point vibrational nature of these motions, they are not quenched by very low temperatures, and methyl-driven Overhauser DNP is expected to increase in efficiency down to 0 K, predominantly due to increases in nuclear relaxation times.
Collapse
Affiliation(s)
- Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Yoh Matsuki
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Scott A Southern
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Dragos F Flesariu
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Johan Van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | | | | |
Collapse
|
7
|
Palani RS, Mardini M, Delage-Laurin L, Banks D, Ouyang Y, Bryerton E, Kempf JG, Swager TM, Griffin RG. Amplified Overhauser DNP with Selective Deuteration: Attenuation of Double-Quantum Cross-Relaxation. J Phys Chem Lett 2023; 14:95-100. [PMID: 36573841 PMCID: PMC9903202 DOI: 10.1021/acs.jpclett.2c03087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We recently used selective 2H labeling of BDPA to investigate the Overhauser Effect (OE) dynamic nuclear polarization (DNP) mechanism in insulating solids doped with 1,3-bis(diphenylene)-2-phenylallyl (BDPA), and established that the α and γ 1H spins on the fluorene rings are responsible for generating a zero quantum (ZQ) mediated positive bulk polarization. Here, we establish that the phenyl 1H spins relax via double-quantum (DQ) processes and therefore contribute negative enhancements which attenuate the OE-DNP. With measurements at different magnetic field strengths, we show that phenyl-d5-BDPA offers >50% improvement in OE-DNP enhancement compared to h21-BDPA attaining a maximum of ∼90 at 14.1 T and 5 kHz MAS, the highest observed OE-DNP enhancement to date under these conditions. The approach may be utilized to optimize other polarizing agents exhibiting an OE, an important DNP mechanism with a favorable field and spinning frequency dependence.
Collapse
Affiliation(s)
| | | | | | - Daniel Banks
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | | | - Eric Bryerton
- Virginia Diodes Corporation, Charlottesville, Virginia 22902, United States
| | - James G Kempf
- Bruker Biospin Corporation, Billerica, Massachusetts 01821, United States
| | | | | |
Collapse
|
8
|
Shimon D, Cantwell KA, Joseph L, Williams EQ, Peng Z, Takahashi S, Ramanathan C. Large Room Temperature Bulk DNP of 13C via P1 Centers in Diamond. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17777-17787. [PMID: 36304670 PMCID: PMC9589901 DOI: 10.1021/acs.jpcc.2c06145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
We use microwave-induced dynamic nuclear polarization (DNP) of the substitutional nitrogen defects (P1 centers) in diamond to hyperpolarize bulk 13C nuclei in both single crystal and powder samples at room temperature at 3.34 T. The large (>100-fold) enhancements demonstrated correspond to a greater than 10 000-fold improvement in terms of signal averaging of the 1% abundant 13C spins. The DNP was performed using low-power solid state sources under static (nonspinning) conditions. The DNP spectrum (DNP enhancement as a function of microwave frequency) of diamond powder shows features that broadly correlate with the EPR spectrum. A well-defined negative Overhauser peak and two solid effect peaks are observed for the central (m I = 0) manifold of the 14N spins. Previous low temperature measurements in diamond had measured a positive Overhauser enhancement in this manifold. Frequency-chirped millimeter-wave excitation of the electron spins is seen to significantly improve the enhancements for the two outer nuclear spin manifolds (mI = ±1) and to blur some of the sharper features associated with the central manifold. The outer lines are best fit using a combination of the cross effect and the truncated cross effect, which is known to mimic features of an Overhauser effect. Similar features are also observed in experiments on single crystal samples. The observation of all of these mechanisms in a single material system under the same experimental conditions is likely due to the significant heterogeneity of the high pressure, high temperature (HPHT) type Ib diamond samples used. Large room temperature DNP enhancements at fields above a few tesla enable spectroscopic studies with better chemical shift resolution under ambient conditions.
Collapse
Affiliation(s)
- Daphna Shimon
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem9190401, Israel
| | - Kelly A. Cantwell
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| | - Linta Joseph
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| | - Ethan Q. Williams
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| | - Zaili Peng
- Department
of Chemistry, University of Southern California, Los Angeles, California90089, United States
| | - Susumu Takahashi
- Department
of Chemistry, University of Southern California, Los Angeles, California90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California90089, United States
| | - Chandrasekhar Ramanathan
- Department
of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire03755, United States
| |
Collapse
|
9
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
10
|
Li T, Yan Y, Shi Q. A low-temperature quantum Fokker-Planck equation that improvesthe numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. J Chem Phys 2022; 156:064107. [DOI: 10.1063/5.0082108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tianchu Li
- Institute of Chemistry Chinese Academy of Sciences, China
| | | | - Qiang Shi
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, China
| |
Collapse
|
11
|
Delage-Laurin L, Palani RS, Golota N, Mardini M, Ouyang Y, Tan KO, Swager TM, Griffin RG. Overhauser Dynamic Nuclear Polarization with Selectively Deuterated BDPA Radicals. J Am Chem Soc 2021; 143:20281-20290. [PMID: 34813311 PMCID: PMC8805148 DOI: 10.1021/jacs.1c09406] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Overhauser effect (OE), commonly observed in NMR spectra of liquids and conducting solids, was recently discovered in insulating solids doped with the radical 1,3-bisdiphenylene-2-phenylallyl (BDPA). However, the mechanism of polarization transfer in OE-DNP in insulators is yet to be established, but hyperfine coupling of the radical to protons in BDPA has been proposed. In this paper we present a study that addresses the role of hyperfine couplings via the EPR and DNP measurements on some selectively deuterated BDPA radicals synthesized for this purpose. Newly developed synthetic routes enable selective deuteration at orthogonal positions or perdeuteration of the fluorene moieties with 2H incorporation of >93%. The fluorene moieties were subsequently used to synthesize two octadeuterated BDPA radicals, 1,3-[α,γ-d8]-BDPA and 1,3-[β,δ-d8]-BDPA, and a BDPA radical with perdeuterated fluorene moieties, 1,3-[α,β,γ,δ-d16]-BDPA. In contrast to the strong positive OE enhancement observed in degassed samples of fully protonated h21-BDPA (ε ∼ +70), perdeuteration of the fluorenes results in a negative enhancement (ε ∼ -13), while selective deuteration of α- and γ-positions (aiso ∼ 5.4 MHz) in BDPA results in a weak negative OE enhancement (ε ∼ -1). Furthermore, deuteration of β- and δ-positions (aiso ∼ 1.2 MHz) results in a positive OE enhancement (ε ∼ +36), albeit with a reduced magnitude relative to that observed in fully protonated BDPA. Our results clearly show the role of the hyperfine coupled α and γ 1H spins in the BDPA radical in determining the dominance of the zero and double-quantum cross-relaxation pathways and the polarization-transfer mechanism to the bulk matrix.
Collapse
Affiliation(s)
- Léo Delage-Laurin
- Institute for Soldier Nanotechnologies, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | - Timothy M Swager
- Institute for Soldier Nanotechnologies, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
12
|
Gurinov A, Sieland B, Kuzhelev A, Elgabarty H, Kühne TD, Prisner T, Paradies J, Baldus M, Ivanov KL, Pylaeva S. Gemischtvalente Verbindungen als polarisierende Mittel für die dynamische Kern‐Overhauser‐Polarisation in Festkörpern**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrei Gurinov
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584CH Utrecht Niederlande
| | - Benedikt Sieland
- Department of Chemistry Paderborn University Warburger Straße 100 Paderborn 33098 Deutschland
| | - Andrey Kuzhelev
- Goethe University Frankfurt am Main Institute of Physical and Theoretical Chemistry Center for Biomolecular Magnetic Resonance Max von Laue Straße 7 60438 Frankfurt am Main Deutschland
| | - Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design Chair of Theoretical Chemistry University of Paderborn Warburger Straße 100 33098 Paderborn Deutschland
| | - Thomas D. Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design Chair of Theoretical Chemistry University of Paderborn Warburger Straße 100 33098 Paderborn Deutschland
| | - Thomas Prisner
- Goethe University Frankfurt am Main Institute of Physical and Theoretical Chemistry Center for Biomolecular Magnetic Resonance Max von Laue Straße 7 60438 Frankfurt am Main Deutschland
| | - Jan Paradies
- Department of Chemistry Paderborn University Warburger Straße 100 Paderborn 33098 Deutschland
| | - Marc Baldus
- NMR Spectroscopy group Bijvoet Center for Biomolecular Research Utrecht University Padualaan 8 3584CH Utrecht Niederlande
| | - Konstantin L. Ivanov
- International Tomography Center Siberian Branch of the Russian Academy of Sciences Novosibirsk 630090 Russland
- Novosibirsk State University Novosibirsk 630090 Russland
| | - Svetlana Pylaeva
- Dynamics of Condensed Matter and Center for Sustainable Systems Design Chair of Theoretical Chemistry University of Paderborn Warburger Straße 100 33098 Paderborn Deutschland
| |
Collapse
|
13
|
Gurinov A, Sieland B, Kuzhelev A, Elgabarty H, Kühne TD, Prisner T, Paradies J, Baldus M, Ivanov KL, Pylaeva S. Mixed-Valence Compounds as Polarizing Agents for Overhauser Dynamic Nuclear Polarization in Solids*. Angew Chem Int Ed Engl 2021; 60:15371-15375. [PMID: 33908694 PMCID: PMC8361920 DOI: 10.1002/anie.202103215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/25/2022]
Abstract
Herein, we investigate a novel set of polarizing agents—mixed‐valence compounds—by theoretical and experimental methods and demonstrate their performance in high‐field dynamic nuclear polarization (DNP) NMR experiments in the solid state. Mixed‐valence compounds constitute a group of molecules in which molecular mobility persists even in solids. Consequently, such polarizing agents can be used to perform Overhauser‐DNP experiments in the solid state, with favorable conditions for dynamic nuclear polarization formation at ultra‐high magnetic fields.
Collapse
Affiliation(s)
- Andrei Gurinov
- NMR Spectroscopy group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Benedikt Sieland
- Department of Chemistry, Paderborn University, Warburger Strasse 100, Paderborn, 33098, Germany
| | - Andrey Kuzhelev
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, Max von Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Thomas Prisner
- Goethe University Frankfurt am Main, Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, Max von Laue Strasse 7, 60438, Frankfurt am Main, Germany
| | - Jan Paradies
- Department of Chemistry, Paderborn University, Warburger Strasse 100, Paderborn, 33098, Germany
| | - Marc Baldus
- NMR Spectroscopy group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Svetlana Pylaeva
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Strasse 100, 33098, Paderborn, Germany
| |
Collapse
|