1
|
Kumar S, Hoshino M, Kerkeni B, García G, Ouerfelli G, Al-Mogren MM, Limão-Vieira P. SF 6 Negative Ion Formation in Charge Transfer Experiments. Molecules 2024; 29:4118. [PMID: 39274966 PMCID: PMC11397648 DOI: 10.3390/molecules29174118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
In the present work, we report an update and extension of the previous ion-pair formation study of Hubers, M.M.; Los, J. Chem. Phys.1975, 10, 235-259, noting new fragment anions from time-of-flight mass spectrometry. The branching ratios obtained from the negative ions formed in K + SF6 collisions, in a wide energy range from 10.7 up to 213.1 eV in the centre-of-mass frame, show that the main anion is assigned to SF5- and contributing to more than 70% of the total ion yield, followed by the non-dissociated parent anion SF6- and F-. Other less intense anions amounting to <20% are assigned to SF3- and F2-, while a trace contribution at 32u is tentatively assigned to S- formation, although the rather complex intramolecular energy redistribution within the temporary negative ion is formed during the collision. An energy loss spectrum of potassium cation post-collision is recorded showing features that have been assigned with the help of theoretical calculations. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom are performed to support the experimental findings. Apart from the role of the different resonances participating in the formation of different anions, the role of higher-lying electronic-excited states of Rydberg character are noted.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Masamitsu Hoshino
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan
| | - Boutheïna Kerkeni
- ISAMM, Université de la Manouba, La Manouba 2010, Tunisia
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain
| | - Ghofrane Ouerfelli
- Department of Physics, College of Khurma University, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muneerah Mogren Al-Mogren
- Department of Chemistry, College of Sciences, King Saud University, P.O. Box 2455, Ryiadh 11451, Saudi Arabia
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC-Centre of Physics and Technological Research, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Kumar S, Ben Chouikha I, Kerkeni B, García G, Limão-Vieira P. Bound Electron Enhanced Radiosensitisation of Nimorazole upon Charge Transfer. Molecules 2022; 27:molecules27134134. [PMID: 35807379 PMCID: PMC9268075 DOI: 10.3390/molecules27134134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
This novel work reports nimorazole (NIMO) radiosensitizer reduction upon electron transfer in collisions with neutral potassium (K) atoms in the lab frame energy range of 10–400 eV. The negative ions formed in this energy range were time-of-flight mass analyzed and branching ratios were obtained. Assignment of different anions showed that more than 80% was due to the formation of the non-dissociated parent anion NIMO•− at 226 u and nitrogen dioxide anion NO2− at 46 u. The rich fragmentation pattern revealed that significant collision induced the decomposition of the 4-nitroimidazole ring, as well as other complex internal reactions within the temporary negative ion formed after electron transfer to neutral NIMO. Other fragment anions were only responsible for less than 20% of the total ion yield. Additional information on the electronic state spectroscopy of nimorazole was obtained by recording a K+ energy loss spectrum in the forward scattering direction (θ ≈ 0°), allowing us to determine the most accessible electronic states within the temporary negative ion. Quantum chemical calculations on the electronic structure of NIMO in the presence of a potassium atom were performed to help assign the most significant lowest unoccupied molecular orbitals participating in the collision process. Electron transfer was shown to be a relevant process for nimorazole radiosensitisation through efficient and prevalent non-dissociated parent anion formation.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Islem Ben Chouikha
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
| | - Boutheïna Kerkeni
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
- ISAMM, Université de La Manouba, La Manouba 2010, Tunisia
- Correspondence: (B.K.); (P.L.-V.)
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain;
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
- Correspondence: (B.K.); (P.L.-V.)
| |
Collapse
|
3
|
Garay-Ruiz D, Álvarez-Moreno M, Bo C, Martínez-Núñez E. New Tools for Taming Complex Reaction Networks: The Unimolecular Decomposition of Indole Revisited. ACS PHYSICAL CHEMISTRY AU 2022; 2:225-236. [PMID: 36855573 PMCID: PMC9718323 DOI: 10.1021/acsphyschemau.1c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The level of detail attained in the computational description of reaction mechanisms can be vastly improved through tools for automated chemical space exploration, particularly for systems of small to medium size. Under this approach, the unimolecular decomposition landscape for indole was explored through the automated reaction mechanism discovery program AutoMeKin. Nevertheless, the sheer complexity of the obtained mechanisms might be a hindrance regarding their chemical interpretation. In this spirit, the new Python library amk-tools has been designed to read and manipulate complex reaction networks, greatly simplifying their overall analysis. The package provides interactive dashboards featuring visualizations of the network, the three-dimensional (3D) molecular structures and vibrational normal modes of all chemical species, and the corresponding energy profiles for selected pathways. The combination of the joined mechanism generation and postprocessing workflow with the rich chemistry of indole decomposition enabled us to find new details of the reaction (obtained at the CCSD(T)/aug-cc-pVTZ//M06-2X/MG3S level of theory) that were not reported before: (i) 16 pathways leading to the formation of HCN and NH3 (via amino radical); (ii) a barrierless reaction between methylene radical and phenyl isocyanide, which might be an operative mechanism under the conditions of the interstellar medium; and (iii) reaction channels leading to both hydrogen cyanide and hydrogen isocyanide, of potential astrochemical interest as the computed HNC/HCN ratios greatly exceed the calculated equilibrium value at very low temperatures. The reported reaction networks can be very valuable to supplement databases of kinetic data, which is of remarkable interest for pyrolysis and astrochemical studies.
Collapse
Affiliation(s)
- Diego Garay-Ruiz
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain,Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Moises Álvarez-Moreno
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute
of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Avinguda Països Catalans,
16, 43007 Tarragona, Spain,Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili (URV), Marcel·lí Domingo s/n, 43007 Tarragona, Spain,
| | - Emilio Martínez-Núñez
- Departmento
de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain,
| |
Collapse
|
4
|
Martínez-Núñez E, Barnes GL, Glowacki DR, Kopec S, Peláez D, Rodríguez A, Rodríguez-Fernández R, Shannon RJ, Stewart JJP, Tahoces PG, Vazquez SA. AutoMeKin2021: An open-source program for automated reaction discovery. J Comput Chem 2021; 42:2036-2048. [PMID: 34387374 DOI: 10.1002/jcc.26734] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023]
Abstract
AutoMeKin2021 is an updated version of tsscds2018, a program for the automated discovery of reaction mechanisms (J. Comput. Chem. 2018, 39, 1922). This release features a number of new capabilities: rare-event molecular dynamics simulations to enhance reaction discovery, extension of the original search algorithm to study van der Waals complexes, use of chemical knowledge, a new search algorithm based on bond-order time series analysis, statistics of the chemical reaction networks, a web application to submit jobs, and other features. The source code, manual, installation instructions and the website link are available at: https://rxnkin.usc.es/index.php/AutoMeKin.
Collapse
Affiliation(s)
- Emilio Martínez-Núñez
- Department of Physical Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York, USA
| | - David R Glowacki
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Sabine Kopec
- Institut de Sciences Moléculaires d'Orsay, UMR 8214, Université Paris-Sud - Université Paris-Saclay, Orsay, France
| | - Daniel Peláez
- Institut de Sciences Moléculaires d'Orsay, UMR 8214, Université Paris-Sud - Université Paris-Saclay, Orsay, France
| | - Aurelio Rodríguez
- Galicia Supercomputing Center (CESGA), Santiago de Compostela, Spain
| | | | - Robin J Shannon
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | | | - Pablo G Tahoces
- Department of Electronics and Computer Science, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Saulo A Vazquez
- Department of Physical Chemistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|