1
|
Schattenberg C, Kaupp M. Implementation and First Evaluation of Strong-Correlation-Corrected Local Hybrid Functionals for the Calculation of NMR Shieldings and Shifts. J Phys Chem A 2024; 128:2253-2271. [PMID: 38456430 PMCID: PMC10961831 DOI: 10.1021/acs.jpca.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Local hybrid functionals containing strong-correlation factors (scLHs) and range-separated local hybrids (RSLHs) have been integrated into an efficient coupled-perturbed Kohn-Sham implementation for the calculation of nuclear shielding constants. Several scLHs and the ωLH22t RSLH have then been evaluated for the first time for the extended NS372 benchmark set of main-group shieldings and shifts and the TM70 benchmark of 3d transition-metal shifts. The effects of the strong-correlation corrections have been analyzed with respect to the spatial distribution of the sc-factors, which locally diminish exact-exchange admixture at certain regions in a molecule. The scLH22t, scLH23t-mBR, and scLH23t-mBR-P functionals, which contain a "damped" strong-correlation factor to retain the excellent performance of the underlying LH20t functional for weakly correlated situations, tend to make smaller corrections to shieldings and shifts than the "undamped" scLH22ta functional. While the latter functional can also deteriorate agreement with the reference data in certain weakly correlated cases, it provides overall better performance, in particular for systems where static correlation is appreciable. This pertains only to a minority of systems in the NS372 main-group test set but to many more systems in the TM70 transition-metal test set, in particular for high-oxidation-state complexes, e.g., Cr(+VI) complexes and other systems with stretched bonds. Another undamped scLH, the simpler LDA-based scLH21ct-SVWN-m, also tends to provide significant improvements in many cases. The differences between the functionals and species can be rationalized on the basis of one-dimensional plots of the strong-correlation factors, augmented by isosurface plots of the fractional orbital density (FOD). Position-dependent exact-exchange admixture is thus shown to provide substantial flexibility in treating response properties like NMR shifts for both weakly and strongly correlated systems.
Collapse
Affiliation(s)
- Caspar
Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie
(FMP), Robert-Roessle-Str.
10, 13125 Berlin, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
2
|
Schattenberg C, Wodyński A, Åström H, Sundholm D, Kaupp M, Lehtola S. Revisiting Gauge-Independent Kinetic Energy Densities in Meta-GGAs and Local Hybrid Calculations of Magnetizabilities. J Phys Chem A 2023; 127:10896-10907. [PMID: 38100678 PMCID: PMC10758120 DOI: 10.1021/acs.jpca.3c06244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
In a recent study [J. Chem. Theory Comput. 2021, 17, 1457-1468], some of us examined the accuracy of magnetizabilities calculated with density functionals representing the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA (mGGA), as well as global hybrid (GH) and range-separated (RS) hybrid functionals by assessment against accurate reference values obtained with coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)]. Our study was later extended to local hybrid (LH) functionals by Holzer et al. [J. Chem. Theory Comput. 2021, 17, 2928-2947]; in this work, we examine a larger selection of LH functionals, also including range-separated LH (RSLH) functionals and strong-correlation LH (scLH) functionals. Holzer et al. also studied the importance of the physically correct handling of the magnetic gauge dependence of the kinetic energy density (τ) in mGGA calculations by comparing the Maximoff-Scuseria formulation of τ used in our aforementioned study to the more physical current-density extension derived by Dobson. In this work, we also revisit this comparison with a larger selection of mGGA functionals. We find that the newly tested LH, RSLH, and scLH functionals outperform all of the functionals considered in the previous studies. The various LH functionals afford the seven lowest mean absolute errors while also showing remarkably small standard deviations and mean errors. Most strikingly, the best two functionals are scLHs that also perform remarkably well in cases with significant multiconfigurational character, such as the ozone molecule, which is traditionally excluded from statistical error evaluations due to its large errors with common density functionals.
Collapse
Affiliation(s)
- Caspar
J. Schattenberg
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Hugo Åström
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Susi Lehtola
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Tran VA, Teucher M, Galazzo L, Sharma B, Pongratz T, Kast SM, Marx D, Bordignon E, Schnegg A, Neese F. Dissecting the Molecular Origin of g-Tensor Heterogeneity and Strain in Nitroxide Radicals in Water: Electron Paramagnetic Resonance Experiment versus Theory. J Phys Chem A 2023; 127:6447-6466. [PMID: 37524058 PMCID: PMC10424240 DOI: 10.1021/acs.jpca.3c02879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/01/2023] [Indexed: 08/02/2023]
Abstract
Nitroxides are common EPR sensors of microenvironmental properties such as polarity, numbers of H-bonds, pH, and so forth. Their solvation in an aqueous environment is facilitated by their high propensity to form H-bonds with the surrounding water molecules. Their g- and A-tensor elements are key parameters to extracting the properties of their microenvironment. In particular, the gxx value of nitroxides is rich in information. It is known to be characterized by discrete values representing nitroxide populations previously assigned to have different H-bonds with the surrounding waters. Additionally, there is a large g-strain, that is, a broadening of g-values associated with it, which is generally correlated with environmental and structural micro-heterogeneities. The g-strain is responsible for the frequency dependence of the apparent line width of the EPR spectra, which becomes evident at high field/frequency. Here, we address the molecular origin of the gxx heterogeneity and of the g-strain of a nitroxide moiety (HMI: 2,2,3,4,5,5-hexamethylimidazolidin-1-oxyl, C9H19N2O) in water. To treat the solvation effect on the g-strain, we combined a multi-frequency experimental approach with ab initio molecular dynamics simulations for structural sampling and quantum chemical EPR property calculations at the highest realistically affordable level, including an explicitly micro-solvated HMI ensemble and the embedded cluster reference interaction site model. We could clearly identify the distinct populations of the H-bonded nitroxides responsible for the gxx heterogeneity experimentally observed, and we dissected the role of the solvation shell, H-bond formation, and structural deformation of the nitroxide in the creation of the g-strain associated with each nitroxide subensemble. Two contributions to the g-strain were identified in this study. The first contribution depends on the number of hydrogen bonds formed between the nitroxide and the solvent because this has a large and well-understood effect on the gxx-shift. This contribution can only be resolved at high resonance frequencies, where it leads to distinct peaks in the gxx region. The second contribution arises from configurational fluctuations of the nitroxide that necessarily lead to g-shift heterogeneity. These contributions cannot be resolved experimentally as distinct resonances but add to the line broadening. They can be quantitatively analyzed by studying the apparent line width as a function of microwave frequency. Interestingly, both theory and experiment confirm that this contribution is independent of the number of H-bonds. Perhaps even more surprisingly, the theoretical analysis suggests that the configurational fluctuation broadening is not induced by the solvent but is inherently present even in the gas phase. Moreover, the calculations predict that this broadening decreases upon solvation of the nitroxide.
Collapse
Affiliation(s)
- Van Anh Tran
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Markus Teucher
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laura Galazzo
- Department
of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Bikramjit Sharma
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Tim Pongratz
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Stefan M. Kast
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Dominik Marx
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Enrica Bordignon
- Department
of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Alexander Schnegg
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
5
|
Trepl T, Schelter I, Kümmel S. Analyzing Excitation-Energy Transfer Based on the Time-Dependent Density Functional Theory in Real Time. J Chem Theory Comput 2022; 18:6577-6587. [PMID: 36268773 DOI: 10.1021/acs.jctc.2c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitation-energy transfer is a key step in processes such as photosynthesis that convert light into other forms of energy. Time-dependent density functional theory (DFT) in real time is ideal for the first-principles simulation of such processes due to its computational efficiency. We here demonstrate how real-time DFT can be used for analyzing excitation-energy transfer from first-principles. We discuss several measures of energy transfer that are based solely on the time-dependent density, are well founded in the DFT framework, allow for intuitive understanding and visualization, and reproduce important limiting cases of an analytical model. We demonstrate their usefulness in calculations for model systems, both with static nuclei and in the context of DFT-based Ehrenfest dynamics.
Collapse
Affiliation(s)
- T Trepl
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - I Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - S Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| |
Collapse
|
6
|
Wodyński A, Kaupp M. Local Hybrid Functional Applicable to Weakly and Strongly Correlated Systems. J Chem Theory Comput 2022; 18:6111-6123. [PMID: 36170626 DOI: 10.1021/acs.jctc.2c00795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent idea (Wodyński, A.; Arbuznikov, A. V.; Kaupp M. J. Chem. Phys. 2021, 155, 144101) to augment local hybrid functionals by a strong-correlation (sc) factor obtained from the adiabatic connection in the spirit of the KP16 model has been extended and applied to generate the accurate sc-corrected local hybrid functional scLH22t. By damping small values of the ratio between nondynamical and dynamical correlation entering the correction factor, it has become possible to avoid double counting of nondynamical correlation for weakly correlated situations and thereby preserve the excellent accuracy of the underlying LH20t local hybrid for such cases almost perfectly. On the other hand, scLH22t improves substantially over LH20t in reducing fractional-spin errors (FSEs), in providing improved spin-restricted bond dissociation curves, and in treating some typical systems with multireference character. The obtained FSEs are similar to those of the KP16/B13 model and slightly larger than for B13, but performance for weakly correlated systems is better than for these two related methods, which are also difficult to use self-consistently. The recent DM21 functional based on the training of a deep neural network still performs somewhat better than scLH22t but allows no physical insights into the origins of reduced FSEs. Examination of local mixing functions (LMFs) for the corrected scLH22t and uncorrected LH20t functionals provides further insights: in weakly correlated situations, the LMF remains essentially unchanged. Strong-correlation effects manifest in a reduction of the LMF values in certain regions of space, even to the extent of producing negative LMF values. It is suggested that this is the mechanism by which also DM21, which may be viewed as a range-separated local hybrid, is able to reduce FSEs.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
7
|
Kaupp M, Schattenberg CJ, Müller R, Reimann M. Unusually Large Effects of Charge-assisted C-H⋅⋅⋅F Hydrogen Bonds to Anionic Fluorine in Organic Solvents: Computational Study of 19 F NMR Shifts versus Thermochemistry. Chemistry 2022; 11:e202200146. [PMID: 35984672 PMCID: PMC9716039 DOI: 10.1002/open.202200146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Indexed: 01/31/2023]
Abstract
A comparison of computed 19 F NMR chemical shifts and experiment provides evidence for large specific solvent effects for fluoride-type anions interacting with the σ*(C-H) orbitals in organic solvents like MeCN or CH2 Cl2 . We show this for systems ranging from the fluoride ion and the bifluoride ion [FHF]- to polyhalogen anions [ClFx ]- . Discrepancies between computed and experimental shifts when using continuum solvent models like COSMO or force-field-based descriptions like the 3D-RISM-SCF model show specific orbital interactions that require a quantum-mechanical treatment of the solvent molecules. This is confirmed by orbital analyses of the shielding constants, while less negatively charged fluorine atoms (e. g., in [EF4 ]- ) do not require such quantum-mechanical treatments to achieve reasonable accuracy. The larger 19 F solvent shift of fluoride in MeCN compared to water is due to the larger coordination number in the former. These observations are due to unusually strong charge-assisted C-H⋅⋅⋅F- hydrogen bonds, which manifest beyond some threshold negative natural charge on fluorine of ca. < -0.6 e. The interactions are accompanied by sizable free energies of solvation, in the order F- ≫[FHF]- >[ClF2 ]- >[ClF4 ]- . COSMO-RS solvation free energies tend to moderately underestimate those from the micro-solvated cluster treatment. Red-shifted and intense vibrational C-H stretching bands, potentially accessible in bulk solution, are further spectroscopic finger prints.
Collapse
Affiliation(s)
- Martin Kaupp
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| | - Caspar J. Schattenberg
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| | - Robert Müller
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| | - Marc Reimann
- Technische Universität BerlinInstitut für Chemie, Theoretische Chemie/QuantenchemieSekr. C7, Strasse des 17. Juni 13510623BerlinGermany
| |
Collapse
|
8
|
Holzer C, Franzke YJ. A Local Hybrid Exchange Functional Approximation from First Principles. J Chem Phys 2022; 157:034108. [DOI: 10.1063/5.0100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local hybrid functionals are a more flexible class of density functional approximations allowing for a position-dependent admixture of exact exchange. This additional flexibility, however, comes with a more involved mathematical form and a more complicated design. A common denominator for previously constructed local hybrid funtionals is usage of thermochemical benchmark data to construct these functionals. Herein, we design a local hybrid functional without relying on benchmark data. Instead, we construct it in a more ab initio manner, following the principles of modern meta-generalized gradient approximations and considering theoretical constrains. To achieve this, we make use of the density matrix expansion and a local mixing function based on an approximate correlation length. The accuracy of the developed density functional approximation is assessed for thermochemistry, excitation energies, polarizabilities, magnetizabilities, NMR spin-spincoupling constants, NMR shieldings and shifts, as well as EPR g-tensors and hyperfine coupling constants. Here, the new exchange functional shows a robust performance and is especially well suited for atomization energies, barrier heights, excitation energies, NMR coupling constants, and EPR properties, whereas it looses some ground for the NMR shifts.Therefore, the designed functional is a major step forwards for functionals that have been designed from first principles.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruher Institut für Technologie Fakultät für Physik, Germany
| | - Yannick J. Franzke
- Fachbereich Chemie, Philipps-Universität Marburg Fachbereich Chemie, Germany
| |
Collapse
|
9
|
Franzke YJ, Holzer C. Communication: Impact of the current density on paramagnetic NMR properties. J Chem Phys 2022; 157:031102. [DOI: 10.1063/5.0103898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Meta-generalized gradient approximations (meta-GGAs) and local hybrid functionals generally depend on the kinetic energy density τ. For magnetic properties, this necessitates generalizations to ensure gauge invariance. In most implementations, τ is generalized by incorporating the external magnetic field. However, this introduces artifacts in the response of the density matrix and does not satisfy the iso-orbital constraint. Here, we extend previous approaches based on the current density to paramagnetic NMR shieldings and EPR g-tensors. The impact is assessed for main-group compounds and transition-metal complexes considering 25 density functional approximations. It is shown that the current density leads to substantial improvements-especially for the popular Minnesota and SCAN functional families. Thus, we strongly recommend to use the current density generalized τ in paramagnetic NMR and EPR calculations with meta-GGAs.
Collapse
Affiliation(s)
- Yannick J. Franzke
- Fachbereich Chemie, Philipps-Universität Marburg Fachbereich Chemie, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruher Institut für Technologie Fakultät für Physik, Germany
| |
Collapse
|
10
|
Schattenberg CJ, Lehmann M, Bühl M, Kaupp M. Systematic Evaluation of Modern Density Functional Methods for the Computation of NMR Shifts of 3d Transition-Metal Nuclei. J Chem Theory Comput 2021; 18:273-292. [PMID: 34968062 DOI: 10.1021/acs.jctc.1c00964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide range of density functionals from all rungs of Jacob's ladder have been evaluated systematically for a set of experimental 3d transition-metal NMR shifts of 70 complexes encompassing 12 × 49Ti, 10 × 51V, 10 × 53Cr, 11 × 55Mn, 9 × 57Fe, 9 × 59Co, and 9 × 61Ni shift values, as well as a diverse range of electronic structure characteristics. The overall 39 functionals evaluated include one LDA, eight GGAs, seven meta-GGAs (including their current-density-functional─CDFT─versions), nine global hybrids, four range-separated hybrids, eight local hybrids, and two double hybrids, and we also include Hartree-Fock and MP2 calculations. While recent evaluations of the same functionals for a very large coupled-cluster-based benchmark of main-group shieldings and shifts achieved in some cases aggregate percentage mean absolute errors clearly below 2%, the best results for the present 3d-nuclei set are in the range between 4 and 5%. Strikingly, the overall best-performing functionals are the recently implemented CDFT versions of two meta-GGAs, namely cM06-L (4.0%) and cVSXC (4.3%), followed by cLH14t-calPBE (4.9%), B3LYP (5.0%), and cLH07t-SVWN (5.1%), i.e., the previously best-performing global hybrid and two local hybrids. A number of further functionals achieve aggregate deviations in the range 5-6%. Range-separated hybrids offer no particular advantage over global hybrids. Due to the overall poor performance of Hartree-Fock theory for all systems except the titanium complexes, MP2 and double-hybrid functionals are unsuitable for these 3d-nucleus shifts and provide large errors. Global hybrid functionals with larger EXX admixtures, such as BHLYP or M06-2X, also perform poorly, and some other highly parametrized global hybrids also are unsuitable. For many functionals depending on local kinetic energy τ, their CDFT variants perform much better than their "non-CDFT" versions. This holds notably also for the above-mentioned M06-L and VSXC, while the effect is small for τ-dependent local hybrids and can even be somewhat detrimental to the agreement with experiment for a few other cases. The separation between well-performing and more poorly performing functionals is mainly determined by their results for the most critical nuclei 55Mn, 57Fe, and 59Co. Here either moderate exact-exchange admixtures or CDFT versions of meta-GGAs are beneficial for the accuracy. The overall deviations of the better-performing global or local hybrids are then typically dominated by the 53Cr shifts, where triplet instabilities appear to disfavor exact-exchange admixture. Further detailed analyses help to pinpoint specific nuclei and specific types of complexes that are challenges for a given functional.
Collapse
Affiliation(s)
- Caspar Jonas Schattenberg
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Morten Lehmann
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Michael Bühl
- School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St Andrews KY16 9ST, Fife, U.K
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie Sekretariat C7, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| |
Collapse
|
11
|
Schattenberg CJ, Kaupp M. Extended Benchmark Set of Main-Group Nuclear Shielding Constants and NMR Chemical Shifts and Its Use to Evaluate Modern DFT Methods. J Chem Theory Comput 2021; 17:7602-7621. [PMID: 34797677 DOI: 10.1021/acs.jctc.1c00919] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An extended theoretical benchmark set, NS372, for light main-group nuclear shieldings and NMR shifts has been constructed based on high-level GIAO-CCSD(T)/pcSseg-3//CCSD(T)/cc-pVQZ reference data. After removal of the large static-correlation cases O3, F3-, and BH from the statistical evaluations for the 17O, 19F, and 11B subsets, the benchmark comprises overall 372 shielding values in 117 molecules with a wide range of electronic-structure situations, containing 124 1H, 14 11B, 93 13C, 43 15N, 31 17O, 47 19F, 14 31P, and 6 33S shielding constants. The CCSD(T)/pcSseg-3 data are shown to be close to the basis-set and method limit and thus provide an excellent benchmark to evaluate more approximate methods, such as density functional approaches. This dataset has been used to evaluate Hartree-Fock (HF) and MP2, and a wide range of exchange-correlation functionals from local density approximation (LDA) to generalized gradient approximations (GGAs) and meta-GGAs (focusing on their current-density functional implementations), as well as global hybrid, range-separated hybrid, local hybrid, and double-hybrid functionals. Starting with absolute shielding constants, the DSD-PBEP86 double hybrid is confirmed to provide the highest accuracy, with an aggregate relative mean absolute error (rel. MAE) of only 0.9%, followed by MP2 (1.1%). MP2 and double hybrids only show larger errors for a few systems with the largest static-correlation effects. The double-hybrid B2GP-PLYP, the two local hybrids cLH12ct-SsirPW92 and cLH12ct-SsifPW92, and the current-density functional meta-GGA cB97M-V follow closely behind (all 1.5%), as do some further functionals, cLH20t and cMN15-L (both 1.6%), as well as B2PLYP and KT3 (both 2.0%). Functionals on the lower rungs of the usual ladder offer the advantage of lower computational cost and access to larger molecules. Closer examination also reveals the best-performing methods for individual nuclei in the test set. Different ways of treating τ-dependent functionals are evaluated. When moving from absolute shielding constants to chemical shifts, some of the methods can benefit from systematic error compensation, and the overall error range somewhat narrows. Further methods now achieve the 2% threshold of relative MAEs, including functionals based on TPSS (TPSSh, cmPSTS).
Collapse
Affiliation(s)
- Caspar Jonas Schattenberg
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
12
|
Gillhuber S, Franzke YJ, Weigend F. Paramagnetic NMR Shielding Tensors and Ring Currents: Efficient Implementation and Application to Heavy Element Compounds. J Phys Chem A 2021; 125:9707-9723. [PMID: 34723533 DOI: 10.1021/acs.jpca.1c07793] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an efficient implementation of paramagnetic NMR shielding tensors and shifts in a nonrelativistic and scalar-relativistic density functional theory framework. For the latter, we make use of the scalar exact two-component Hamiltonian in its local approximation, and generally we apply the well established (multipole-accelerated) resolution of the identity approximation and the seminumerical exchange approximation. The perturbed density matrix of a paramagnetic NMR shielding calculation is further used to study the magnetically induced current density and ring currents of open-shell systems as illustrated for [U@Bi12]3-. [U@Bi12]3- features delocalized highest occupied molecular orbitals and sustains a net diatropic ring current of ca. 18 nA/T through the Bi12 torus similar to the all-metal aromatic heavy-element cluster [Th@Bi12]4-.
Collapse
Affiliation(s)
- Sebastian Gillhuber
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| |
Collapse
|
13
|
Grotjahn R, Kaupp M. Assessment of hybrid functionals for singlet and triplet excitations: Why do some local hybrid functionals perform so well for triplet excitation energies? J Chem Phys 2021; 155:124108. [PMID: 34598568 DOI: 10.1063/5.0063751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The performance of various hybrid density functionals is assessed for 105 singlet and 105 corresponding triplet vertical excitation energies from the QUEST database. The overall lowest mean absolute error is obtained with the local hybrid (LH) functional LH12ct-SsirPW92 with individual errors of 0.11 eV (0.11 eV) for singlet (triplet) n → π* excitations and 0.29 eV (0.17 eV) for π → π* excitations. This is slightly better than with the overall best performing global hybrid M06-2X [n → π*: 0.13 eV (0.17 eV), π → π*: 0.30 eV (0.20 eV)], while most other global and range-separated hybrids and some LHs suffer from the "triplet problem" of time-dependent density functional theory. This is exemplified by correlating the errors for singlet and triplet excitations on a state-by-state basis. The excellent performance of LHs based on a common local mixing function, i.e., an LMF constructed from the spin-summed rather than the spin-resolved semilocal quantities, is systematically investigated by the introduction of a spin-channel interpolation scheme that allows us to continuously modulate the fraction of opposite-spin terms used in the LMF. The correlation of triplet and singlet errors is systematically improved for the n → π* excitations when larger fractions of the opposite-spin-channel are used in the LMF, whereas this effect is limited for the π → π* excitations. This strongly supports a previously made hypothesis that attributes the excellent performance of LHs based on a common LMF to cross-spin-channel nondynamical correlation terms.
Collapse
Affiliation(s)
- Robin Grotjahn
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|