1
|
Gao RY, Zou JW, Shi YP, Li DH, Zheng J, Zhang JP. The Q-Band Energetics and Relaxation of Chlorophylls a and b as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy. J Phys Chem Lett 2025; 16:789-794. [PMID: 39805070 DOI: 10.1021/acs.jpclett.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (fs-TA) absorption spectroscopy in 430-1,700 nm to Chls a and b in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the Bx,y ← Qy and Bx,y ← Qx transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Qx(0,0)-state energy that lies 1,000 ± 400 and 600 ± 400 cm-1 above the Qy(0,0)-state for Chls a and b, respectively. In addition, the Qx-to-Qy internal conversion time constants are estimated to be less than 80 fs for Chls a and b. These findings may shed light on understanding the roles of the Chls in the primary excitation energy transfer reactions of photosynthesis.
Collapse
Affiliation(s)
- Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Jian-Wei Zou
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yan-Ping Shi
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Junrong Zheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
2
|
Yang C, Hunt W, Refael G, Esin I. Quantized Acoustoelectric Floquet Effect in Quantum Nanowires. PHYSICAL REVIEW LETTERS 2024; 133:226301. [PMID: 39672107 DOI: 10.1103/physrevlett.133.226301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
External coherent fields can drive quantum materials into nonequilibrium states, revealing exotic properties that are unattainable under equilibrium conditions-an approach known as "Floquet engineering." While optical lasers have commonly been used as the driving fields, recent advancements have introduced nontraditional sources, such as coherent phonon drives. Building on this progress, we demonstrate that driving a metallic quantum nanowire with a coherent wave of terahertz phonons can induce an electronic steady state characterized by a persistent quantized current along the wire. The quantization of the current is achieved due to the coupling of electrons to the nanowire's vibrational modes, providing the low-temperature heat bath and energy relaxation mechanisms. Our findings underscore the potential of using nonoptical drives, such as coherent phonon sources, to induce nonequilibrium phenomena in materials. Furthermore, our approach suggests a new method for the high-precision detection of coherent phonon oscillations via transport measurements.
Collapse
|
3
|
Vernuccio F, Broggio E, Sorrentino S, Bresci A, Junjuri R, Ventura M, Vanna R, Bocklitz T, Bregonzio M, Cerullo G, Rigneault H, Polli D. Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms. Sci Rep 2024; 14:23903. [PMID: 39397092 PMCID: PMC11471805 DOI: 10.1038/s41598-024-74912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Broadband Coherent anti-Stokes Raman (BCARS) microscopy is an imaging technique that can acquire full Raman spectra (400-3200 cm-1) of biological samples within a few milliseconds. However, the CARS signal suffers from an undesired non-resonant background (NRB), deriving from four-wave-mixing processes, which distorts the peak line shapes and reduces the chemical contrast. Traditionally, the NRB is removed using numerical algorithms that require expert users and knowledge of the NRB spectral profile. Recently, deep-learning models proved to be powerful tools for unsupervised automation and acceleration of NRB removal. Here, we thoroughly review the existing NRB removal deep-learning models (SpecNet, VECTOR, LSTM, Bi-LSTM) and present two novel architectures. The first one combines convolutional layers with Gated Recurrent Units (CNN + GRU); the second one is a Generative Adversarial Network (GAN) that trains an encoder-decoder network and an adversarial convolutional neural network. We also introduce an improved training dataset, generalized on different BCARS experimental configurations. We compare the performances of all these networks on test and experimental data, using them in the pipeline for spectral unmixing of BCARS images. Our analyses show that CNN + GRU and VECTOR are the networks giving the highest accuracy, GAN is the one that predicts the highest number of true positive peaks in experimental data, whereas GAN and VECTOR are the most suitable ones for real-time processing of BCARS images.
Collapse
Affiliation(s)
- Federico Vernuccio
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy.
- Aix Marseille University, CNRS, Centrale Med, Institut Fresnel, Marseille, France.
| | - Elia Broggio
- Datrix S.p.A., Foro Buonaparte 71, 20121, Milan, Italy
| | - Salvatore Sorrentino
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Rajendhar Junjuri
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert‑Einstein‑Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | - Marco Ventura
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), P.zza Leonardo Da Vinci 32, 20133, Milan, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), P.zza Leonardo Da Vinci 32, 20133, Milan, Italy
| | - Thomas Bocklitz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert‑Einstein‑Strasse 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), P.zza Leonardo Da Vinci 32, 20133, Milan, Italy
| | - Hervé Rigneault
- Aix Marseille University, CNRS, Centrale Med, Institut Fresnel, Marseille, France
| | - Dario Polli
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy.
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), P.zza Leonardo Da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
4
|
Chawla S, Dhamija S, Bhutani G, De AK. On the nature of initial solvation in bulk polar liquids: Gaussian or exponential? J Chem Phys 2024; 161:064201. [PMID: 39132795 DOI: 10.1063/5.0218336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Measurement of time evolution of fluorescence of a probe solute has been a quintessential technique to quantify how dipolar solvent molecules dynamically minimize the free energy of an electronically excited probe. During such solvation dynamics in bulk liquids, a substantial part of relaxation was shown to complete within sub-100 fs from time-gated fluorescence measurements, as also predicted by molecular dynamics simulation studies. However, equivalent quantification of solvation timescales by femtosecond pump-probe and broadband fluorescence measurements revealed an exponential nature of this initial relaxation having quite different timescales. Here, we set out to unveil the reason behind these puzzling contradictions. We introduce a method for estimating probe wavelength-dependent instrument response and demonstrate that the observation of the Gaussian vs exponential nature of initial relaxation is indeed dependent on the method of data analysis. These findings call for further experimental investigation and parallel development of theoretical models to elucidate the molecular-level mechanism accounting for different types of early time solvation.
Collapse
Affiliation(s)
- Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140 306, India
| | - Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140 306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140 306, India
| | - Arijit Kumar De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140 306, India
| |
Collapse
|
5
|
Mai E, Malakar P, Batignani G, Martinati M, Ruhman S, Scopigno T. Orchestrating Nuclear Dynamics in a Permanganate Doped Crystal with Chirped Pump-Probe Spectroscopy. J Phys Chem Lett 2024; 15:6634-6646. [PMID: 38888442 DOI: 10.1021/acs.jpclett.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pump-probe spectroscopy is a powerful tool to investigate light-induced dynamical processes in molecules and solids. Targeting vibrational excitations occurring on the time scales of nuclear motions is challenging, as pulse durations shorter than a vibrational period are needed to initiate the dynamics, and complex experimental schemes are required to isolate weak signatures arising from wavepacket motion in different electronic states. Here, we demonstrate how introducing a temporal delay between the spectral components of femtosecond beams, namely a chirp resulting in the increase of their duration, can counterintuitively boost the desired signals by 2 orders of magnitude. Measuring the time-domain vibrational response of permanganate ions embedded in a KClO4 matrix, we identify an intricate dependence of the vibrational response on pulse chirps and probed wavelength that can be exploited to unveil weak signatures of the doping ions─otherwise dominated by the nonresonant matrix─or to obtain vibrational excitations pertaining only to the excited state, suppressing ground-state contributions.
Collapse
Affiliation(s)
- Emanuele Mai
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Giovanni Batignani
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Miles Martinati
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tullio Scopigno
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Graphene Laboratories, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
6
|
Qiang Y, Sun K, Palacino-González E, Shen K, Rao BJ, Gelin MF, Zhao Y. Probing avoided crossings and conical intersections by two-pulse femtosecond stimulated Raman spectroscopy: Theoretical study. J Chem Phys 2024; 160:054107. [PMID: 38341700 DOI: 10.1063/5.0186583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
This study leverages two-pulse femtosecond stimulated Raman spectroscopy (2FSRS) to characterize molecular systems with avoided crossings (ACs) and conical intersections (CIs) in their low-lying excited electronic states. By simulating 2FSRS spectra of microscopically inspired ACs and CIs models, we demonstrate that 2FSRS not only delivers valuable information on the molecular parameters characterizing ACs and CIs but also helps distinguish between these two systems.
Collapse
Affiliation(s)
- Yijia Qiang
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Elisa Palacino-González
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - B Jayachander Rao
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
7
|
Lee A, Son M, Deegbey M, Woodhouse MD, Hart SM, Beissel HF, Cesana PT, Jakubikova E, McCusker JK, Schlau-Cohen GS. Observation of parallel intersystem crossing and charge transfer-state dynamics in [Fe(bpy) 3] 2+ from ultrafast 2D electronic spectroscopy. Chem Sci 2023; 14:13140-13150. [PMID: 38023502 PMCID: PMC10664481 DOI: 10.1039/d3sc02613b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
Transition metal-based charge-transfer complexes represent a broad class of inorganic compounds with diverse photochemical applications. Charge-transfer complexes based on earth-abundant elements have been of increasing interest, particularly the canonical [Fe(bpy)3]2+. Photoexcitation into the singlet metal-ligand charge transfer (1MLCT) state is followed by relaxation first to the ligand-field manifold and then to the ground state. While these dynamics have been well-studied, processes within the MLCT manifold that facilitate and/or compete with relaxation have been more elusive. We applied ultrafast two-dimensional electronic spectroscopy (2DES) to disentangle the dynamics immediately following MLCT excitation of this compound. First, dynamics ascribed to relaxation out of the initially formed 1MLCT state was found to correlate with the inertial response time of the solvent. Second, the additional dimension of the 2D spectra revealed a peak consistent with a ∼20 fs 1MLCT → 3MLCT intersystem crossing process. These two observations indicate that the complex simultaneously undergoes intersystem crossing and direct conversion to ligand-field state(s). Resolution of these parallel pathways in this prototypical earth-abundant complex highlights the ability of 2DES to deconvolve the otherwise obscured excited-state dynamics of charge-transfer complexes.
Collapse
Affiliation(s)
- Angela Lee
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Minjung Son
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mawuli Deegbey
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Matthew D Woodhouse
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Hayden F Beissel
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | - Paul T Cesana
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - James K McCusker
- Department of Chemistry, Michigan State University East Lansing MI 48824 USA
| | | |
Collapse
|
8
|
Kumar A, Malevich P, Mewes L, Wu S, Barham JP, Hauer J. Transient absorption spectroscopy based on uncompressed hollow core fiber white light proves pre-association between a radical ion photocatalyst and substrate. J Chem Phys 2023; 158:144201. [PMID: 37061463 DOI: 10.1063/5.0142225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
We present a hollow-core fiber (HCF) based transient absorption experiment, with capabilities beyond common titanium:sapphire based setups. By spectral filtering of the HCF spectrum, we provide pump pulses centered at 425 nm with several hundred nJ of pulse energy at the sample position. By employing the red edge of the HCF output for seeding CaF2, we obtain smooth probing spectra in the range between 320 and 900 nm. We demonstrate the capabilities of our experiment by following the ultrafast relaxation dynamics of a radical cationic photocatalyst to prove its pre-association with an arene substrate, a phenomenon that was not detectable previously by steady-state spectroscopic techniques. The detected preassembly rationalizes the successful participation of radical ionic photocatalysts in single electron transfer reactions, a notion that has been subject to controversy in recent years.
Collapse
Affiliation(s)
- Ajeet Kumar
- Department of Chemistry and Catalysis Research Center (CRC), School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Pavel Malevich
- Department of Chemistry and Catalysis Research Center (CRC), School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Lars Mewes
- Department of Chemistry and Catalysis Research Center (CRC), School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Shangze Wu
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
| | - Joshua P Barham
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany
| | - Jürgen Hauer
- Department of Chemistry and Catalysis Research Center (CRC), School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
9
|
Absolute excited state molecular geometries revealed by resonance Raman signals. Nat Commun 2022; 13:7770. [PMID: 36522323 PMCID: PMC9755279 DOI: 10.1038/s41467-022-35099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Ultrafast reactions activated by light absorption are governed by multidimensional excited-state (ES) potential energy surfaces (PESs), which describe how the molecular potential varies with the nuclear coordinates. ES PESs ad-hoc displaced with respect to the ground state can drive subtle structural rearrangements, accompanying molecular biological activity and regulating physical/chemical properties. Such displacements are encoded in the Franck-Condon overlap integrals, which in turn determine the resonant Raman response. Conventional spectroscopic approaches only access their absolute value, and hence cannot determine the sense of ES displacements. Here, we introduce a two-color broadband impulsive Raman experimental scheme, to directly measure complex Raman excitation profiles along desired normal modes. The key to achieve this task is in the signal linear dependence on the Frank-Condon overlaps, brought about by non-degenerate resonant probe and off-resonant pump pulses, which ultimately enables time-domain sensitivity to the phase of the stimulated vibrational coherences. Our results provide the tool to determine the magnitude and the sensed direction of ES displacements, unambiguously relating them to the ground state eigenvectors reference frame.
Collapse
|