1
|
Kang M, Hong W, Lee I, Park S, Park C, Bae S, Lim H, Choi SY. Tunable Doping Strategy for Few-Layer MoS 2 Field-Effect Transistors via NH 3 Plasma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43849-43859. [PMID: 39135314 DOI: 10.1021/acsami.4c08549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Molybdenum disulfide (MoS2) is a promising candidate for next-generation transistor channel materials, boasting outstanding electrical properties and ultrathin structure. Conventional ion implantation processes are unsuitable for atomically thin two-dimensional (2D) materials, necessitating nondestructive doping methods. We proposed a novel approach: tunable n-type doping through sulfur vacancies (VS) and p-type doping by nitrogen substitution in MoS2, controlled by the duration of NH3 plasma treatment. Our results reveal that NH3 plasma exposure of 20 s increases the 2D sheet carrier density (n2D) in MoS2 field-effect transistors (FETs) by +4.92 × 1011 cm-2 at a gate bias of 0 V, attributable to sulfur vacancy generation. Conversely, treatment of 40 s reduces n2D by -3.71 × 1011 cm-2 due to increased nitrogen doping. X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence analyses corroborate these electrical characterization results, indicating successful n- and p-type doping. Temperature-dependent measurements show that the Schottky barrier height at the metal-semiconductor contact decreases by -31 meV under n-type conditions and increases by +37 meV for p-type doping. This study highlights NH3 plasma treatment as a viable doping method for 2D materials in electronic and optoelectronic device engineering.
Collapse
Affiliation(s)
- Mingu Kang
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woonggi Hong
- School of Electronics and Electrical Engineering, Convergence Semiconductor Research Center, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Inseong Lee
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seohak Park
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Cheolmin Park
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sanggeun Bae
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeongjin Lim
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung-Yool Choi
- School of Electrical Engineering, Graduate School of Semiconductor Technology, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Bang S, Snoeckx R, Cha MS. Valorization of Glycerol through Plasma-Induced Transformation into Formic Acid. CHEMSUSCHEM 2024; 17:e202300925. [PMID: 37811907 DOI: 10.1002/cssc.202300925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
To cope with climate change issues, a significant shift is required in worldwide energy sources. Hydrogen and bioenergy are being considered as alternatives toward a carbon neutral society, making formic acid - a hydrogen carrying product of glycerol - of interest for the valorization of glycerol. Here we investigate the plasma-induced transformation of glycerol in an aqueous nanosecond repetitively pulsed discharge reactor. We found that the water content in the aqueous mixture fulfilled a crucial role in both the gas phase (as a source of OH radicals) and the liquid phase (as a promotor of the dissolved OH radical's mobility and reactivity). The formic acid produced was linearly proportional to the specific input energy, and the most cost-effective production of formic acid was found with 10 % v/v glycerol in the aqueous mixture. A plausible reaction pathway was proposed, consisting of the OH radical-driven dehydrogenation and dehydration of glycerol. The results provide a fundamental understanding of plasma-induced transformation of glycerol to formic acid and insights for future practical applications.
Collapse
Affiliation(s)
- Seunghwan Bang
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Ramses Snoeckx
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Min Suk Cha
- CCRC, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
3
|
Huang X, Lei K, Mi Y, Fang W, Li X. Recent Progress on Hydrogen Production from Ammonia Decomposition: Technical Roadmap and Catalytic Mechanism. Molecules 2023; 28:5245. [PMID: 37446906 DOI: 10.3390/molecules28135245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Ammonia decomposition has attracted significant attention in recent years due to its ability to produce hydrogen without emitting carbon dioxide and the ease of ammonia storage. This paper reviews the recent developments in ammonia decomposition technologies for hydrogen production, focusing on the latest advances in catalytic materials and catalyst design, as well as the research progress in the catalytic reaction mechanism. Additionally, the paper discusses the advantages and disadvantages of each method and the importance of finding non-precious metals to reduce costs and improve efficiency. Overall, this paper provides a valuable reference for further research on ammonia decomposition for hydrogen production.
Collapse
Affiliation(s)
- Xiangyong Huang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China
| | - Ke Lei
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, China
| | - Yan Mi
- School of Electrical and Energy Power Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wenjian Fang
- School of Electrical and Energy Power Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaochuan Li
- School of Electrical and Energy Power Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Klippenstein SJ, Kohse-Höinghaus K. Combustion in a Sustainable World: From Molecules to Processes. J Phys Chem A 2023; 127:3737-3742. [PMID: 37139614 DOI: 10.1021/acs.jpca.3c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | |
Collapse
|