1
|
Hadi H, Aouled Dlala N, Cherif I, Gassoumi B, Abdelaziz B, Safari R, Caccamo MT, Magazù S, Patanè S, Ghalla H, Ayachi S. Exploring Nano-optical Molecular Switch Systems for Potential Electronic Devices: Understanding Electric and Electronic Properties through DFT-QTAIM Assembly. ACS OMEGA 2024; 9:37702-37715. [PMID: 39281953 PMCID: PMC11391465 DOI: 10.1021/acsomega.4c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
The design and synthesis of molecular nanoswitches using organic molecules represent a crucial research field within molecular electronics. To understand the switching mechanisms, it is essential to investigate various factors, such as charge/energy transfer, electron transfer, nonlinear optical properties (NLO), current-voltage (I-V) curves, Joule-like (LJL) and Peltier-like (LPL) intramolecular phenomenological coefficients, as well as the energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) boundary orbitals. In this Article, a novel approach to designing a molecular nanoswitch and understanding its ON/OFF mechanism is presented, utilizing the quantum theory of atoms in molecules (QTAIM), density functional theory (DFT), and Landauer theory (LT). These analyses contribute significantly to a deep understanding of switching effects within molecular electronic systems.
Collapse
Affiliation(s)
- Hamid Hadi
- Department of Chemistry, Physical Chemistry Group, Lorestan University, Khorramabad 6815144316, Iran
| | - Najet Aouled Dlala
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Imen Cherif
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
- Department of Industrial Chemistry and Engineering of Materials and CASPE-INSTM, University of Messina, V. le F. Stagno d' Alcontres 31, 98166 Messina, Italy
| | - Bouzid Gassoumi
- Laboratory of Advanced Materials and Interfaces (LIMA), Faculty of Sciences of Monastir, University of Monastir, Avenue of Environment, 5000 Monastir, Tunisia
| | - Balkis Abdelaziz
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Reza Safari
- Department of Chemistry, Physical Chemistry Group, University of Qom, Qom 3716146611, Iran
| | - Maria Teresa Caccamo
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Salvatore Magazù
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Salvatore Patanè
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, I-98166 Messina, Italy
| | - Houcine Ghalla
- Quantum and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Arunkumar A, Ju XH. Computational method on highly efficient D-π-A-π-D-based different molecular acceptors for organic solar cells applications and non-linear optical behaviour. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124391. [PMID: 38704998 DOI: 10.1016/j.saa.2024.124391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Eight molecular structures (BT-A1 to BT-A8) with high-performance non-fullerene acceptor (NFA) were selected for organic solar cells (OSCs) and non-linear optical (NLO) applications. Their electronic, photovoltaic (PV) and optoelectronic properties were tuned by adding powerful electron-withdrawing groups to the acceptor (A) of the D-π-A-π-D structure. Using time-dependent density functional theory (TD-DFT) techniques, based on the laws of quantum chemical calculations, the absorption spectra, stability of the highest and lowest-energy molecular orbitals (HOMO/LUMOs), electron density, intramolecular charge transfer (ICT), transition density matrix (TDM), were examined. The binding energy (Eb) and density of states (DOS) were probed to realize the optoelectronic analysis of the structures BT-A1 to BT-A8. Noncovalent interactions (NCIs) based on a reduced density gradient (RDG) were used to describe the nature and strength of D-A interactions in the molecules BT-A1 to BT-A8. The new refined molecules BT-A1 to BT-A8 exhibited strong absorbance bands between 408-721 nm and high electron transfer contribution (ETC) ranges between 87-96 %, along with the smallest excitation energies (Ex) between 1.71-3.55 eV in the solvent dichloromethane. Dipolar moment strengths ranging from 0.38 to 4.72 Debye in both the excited and ground states have determined with good solubility properties of BT-A1 to BT-A8 in polar solvent. Highly effective charge mobilities and prevention of charge recombination have been demonstrated by the electron (0.18-0.41 eV) and hole RE values (0.13-0.89 eV) for the new compounds. Power conversion efficiencies (PCE) of BT-A1 to BT-A8 were nearly the same because of better outcomes compared to the molecules in the BT. Compared to poly[4.8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b: 4,5-b']dithiophene-2,6- diyl-alt-(4-2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7-Th), the open circuit voltages (Voc) of compounds BT-A1 to BT-A8 were ranged from 1.52 to 2.13 eV. The polarizability (α) and hyperpolarizability (β) of the molecules BT-A1 to BT-A8 were used to determine the non-linear optical (NLO) properties. The results showed that BT-A2, BT-A6 and BT-A7 have good NLO activity. This computational analysis demonstrates the superiority of the molecules with NFA. Hence the compounds are advised for the use in production of high-performance OSCs and NLO activity.
Collapse
Affiliation(s)
- Ammasi Arunkumar
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xue-Hai Ju
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
3
|
Chouchen B, Mhadhbi N, Gassoumi B, Hamdi I, Hadi H, der Maur MA, Chouaih A, Ladhari T, Magazù S, Naïli H, Ayachi S. DFT-Computational Modeling and TiberCAD Frameworks for Photovoltaic Performance Investigation of Copper-Based 2D Hybrid Perovskite Solar Absorbers. ACS OMEGA 2024; 9:29263-29273. [PMID: 39005796 PMCID: PMC11238307 DOI: 10.1021/acsomega.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 05/30/2024] [Indexed: 07/16/2024]
Abstract
In this work, we use a combination of dispersion-corrected density functional theory (DFT-D3) and the TiberCAD framework for the first time to investigate a newly designed and synthesized class of (C6H10N2)[CuCl4] 2D-type perovskite. The inter- and intra-atomic reorganization in the crystal packing and the type of interaction forming in the active area have been discussed via Hirshfeld surface (HS) analyses. A distinct charge transfer from CuCl4 to [C6H10N2] is identified by frontier molecular orbitals (FMOs) and density of states (DOS). This newly designed narrow-band gap small-molecule perovskite, with an energy gap (E g) of 2.11 eV, exhibits a higher fill factor (FF = 81.34%), leading to an open-circuit voltage (V oc) of 1.738 V and a power conversion efficiency (PCE) approaching ∼10.20%. The interaction between a donor (D) and an acceptor (A) results in a charge transfer complex (CT) through the formation of hydrogen bonds (Cl-H), as revealed by QTAIM analysis. These findings were further supported by 2D-LOL and 3D-ELF analyses by visualizing excess electrons surrounding the acceptor entity. Finally, we performed numerical simulations of solar cell structures using TiberCAD software.
Collapse
Affiliation(s)
- Bilel Chouchen
- Laboratory of Automatic, Electrical Systems and Environment (LAESE), The National Engineering School of Monastir (ENIM), University of Monastir, Av. Ibn El Jazzar Skanes, 5019 Monastir, Tunisia
| | - Noureddine Mhadhbi
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, Sfax 3000, Tunisia
- University of Monastir, Preparatory Institute for Engineering Studies of Monastir, 5019 Monastir, Tunisia
| | - Bouzid Gassoumi
- Laboratory of Advanced Materials and Interfaces (LIMA), University of Monastir, Faculty of Sciences of Monastir, Avenue of Environment, 5000 Monastir, Tunisia
| | - Intissar Hamdi
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, Sfax 3000, Tunisia
| | - Hamid Hadi
- Department of Chemistry, Physical Chemistry Group, Lorestan University, Khorramabad 6815144316, Iran
| | - Matthias Auf der Maur
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Abdelkader Chouaih
- Laboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University of Mostaganem, BP 227 Mostaganem 27000, Algeria
| | - Taoufik Ladhari
- Laboratory of Automatic, Electrical Systems and Environment (LAESE), The National Engineering School of Monastir (ENIM), University of Monastir, Av. Ibn El Jazzar Skanes, 5019 Monastir, Tunisia
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres n°31, S. Agata, 98166, Messina, Italy
| | - Houcine Naïli
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, Sfax 3000, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, University of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
4
|
Kiven DE, Bine FK, Nkungli NK, Tamafo Fouegue AD, Tasheh SN, Ghogomu JN. Enhancing the charge transport and luminescence properties of ethyl 4-[( E)-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate through complexation: a DFT and TD-DFT study. RSC Adv 2024; 14:18646-18662. [PMID: 38863822 PMCID: PMC11166190 DOI: 10.1039/d4ra02250e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Organic light emitting diode (OLED) and organic solar cell (OSC) properties of ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl)methyleneamino]benzoate (EMAB) and its Pt2+, Pd2+, Ni2+, Ir3+, Rh3+, and Zn2+ complexes have been theoretically studied herein. Geometry optimizations have been performed via the r2SCAN-3c composite method while single-point calculations have been carried out at the PBE0-D3(BJ)/def2-TZVP level of theory. Results have shown that complexation with selected metal ions improves hole and electron transfer rates in Pt[EMAB]2 and Rh[EMAB]2 +. Specifically, the hole transport rate of Pt[EMAB]2, (k ct(h) = 6.15 × 1014 s-1), is found to be 44 times greater than that of [EMAB], (k ct(h) = 1.42 × 1013 s-1), whereas electron transport rate of Pt[EMAB]2, (k ct(e) = 4.6 × 1013 s-1) is 4 times that of EMAB (k ct(e) = 1.1 × 1013 s-1). Charge mobility for holes and electrons are equal to 19.182 cm2 V-1 s-1 and 1.431 cm2 V-1 s-1 respectively for Pt[EMAB]2, and equal to 4.11 × 10-1 cm2 V-1 s-1 and 3.43 × 10-1 cm2 V-1 s-1 for EMAB respectively. These results show that, charge transport in EMAB can be tuned for better performance through complexation with transition metals such as Pt2+. OSC properties of the complexes were also studied by comparing their HOMO/LUMO energies with those of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3-hexylthiophene) (P3HT). It turned out that the energy gap of EMAB reduced significantly upon complexation from 2.904 eV to 0.56 eV in [Rh(EMAB)2]+ and to a lesser extent in the other complexes. The energy values of the HOMOs remained higher than those of PCBM while those of the LUMOs were found to be greater than that of P3HT with the exception of [Rh(EMAB)2]+. These findings show that the aforementioned species are good electron donors to PCBM. The open circuit voltage, V OC, of the compounds ranged between 0.705 × 10-19 V and 6.617 × 10-19 V, values that are good enough for practical usage in OSC applications. The UV-visible absorption spectra revealed absorption maxima well below 900 nm in all compounds, vital in the efficient functioning of solar cells. In general, this study has shown that platinoid complexation of EMAB can successfully modify both its OLED and OSC properties, making them better precursors in the electronic industry.
Collapse
Affiliation(s)
- Dinyuy Emmanuel Kiven
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | - Fritzgerald Kogge Bine
- Department of Fundamental and Cross-cutting Sciences, National Advanced School of Public Works P. O. Box 510 Yaounde Cameroon,
| | - Nyiang Kennet Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | | | - Stanley Numbonui Tasheh
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
| | - Julius Numbonui Ghogomu
- Department of Chemistry, Faculty of Science, The University of Bamenda P. O. Box 39, Bambili Bamenda Cameroon
- Department of Chemistry, Research Unit of Noxious Chemistry and Environmental Engineering, Faculty of Science, University of Dschang P. O. Box 67 Dschang Cameroon
| |
Collapse
|
5
|
Chérif I, Gassoumi B, Ayachi H, Echabaane M, Caccamo MT, Magazù S, Said AH, Taoufik B, Ayachi S. A theoretical and electrochemical impedance spectroscopy study of the adsorption and sensing of selected metal ions by 4-morpholino-7-nitrobenzofuran. Heliyon 2024; 10:e26709. [PMID: 38439845 PMCID: PMC10909671 DOI: 10.1016/j.heliyon.2024.e26709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
The selectivity of a novel chemosensor, based on a modified nitrobenzofurazan referred to as NBD-Morph, has been investigated for the detection of heavy metal cations (Co2+, Pb2+, Mg2+, Ag+, Cu2+, Hg2+, Ni2+, and Zn2+). The ligand, 4-morpholino-7-nitrobenzofurazan (NBD-Morph), was characterized using spectroscopic techniques including FT-IR and 1H NMR. Vibrational frequencies obtained from FT-IR and proton NMR (1H) chemical shifts were accurately predicted employing the density functional theory (DFT) at the B3LYP level of theory. Furthermore, an examination of the structural, electronic, and quantum chemical properties was conducted and discussed. DFT calculations were employed to explore the complex formation ability of the NBD-Morph ligand with Co2+, Pb2+, Mg2+, Ag+, Cu2+, Hg2+, Ni2+, and Zn2+ metal cations. The comparison of adsorption energies for all possible conformations reveals that NBD-Morph exhibits sensitivity and selectivity towards metal ions, including Pb2+, Cu2+, Ag+, and Ni2+. However, an assessment of their reactivity using QTAIM topological parameters demonstrated the ligand's greater complexation ability toward Cu2+ or Ni2+ than those formed by Pb2+ or Ag+. Additionally, molecular electrostatic potential (MEP), Hirshfeld surfaces, and their associated 2D-fingerprint plots were applied to a detailed study of the inter-molecular interactions in NBD-Morph-X (X = Pb2+, Cu2+, Ag+, Ni2+) complexes. The electron localization function (ELF) and the localized-orbital locator (LOL) were generated to investigate the charge transfer and donor-acceptor interactions within the complexes. Electrochemical analysis further corroborates the theoretical findings, supporting the prediction of NBD-Morph's sensory ability towards Ni2+ metal cations. In conclusion, NBD-Morph stands out as a promising sensor for Ni2+.
Collapse
Affiliation(s)
- Imen Chérif
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Bouzid Gassoumi
- Laboratoire Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Hajer Ayachi
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Mosaab Echabaane
- CRMN, Centre de Recherche en Microélectronique et Nanotechnologie de Sousse, Nanomisene, LR16CRMN01, 4054, Sousse, Tunisie
| | - Maria Teresa Caccamo
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale Ferdinando Stagno D'Alcontres No. 31, S. Agata, 98166, Messina, Italy
| | - Ayoub Haj Said
- Laboratoire Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Boubaker Taoufik
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Faculté des Sciences, Université de Monastir, Avenue de l’Environnement, 5019, Monastir, Tunisia
| | - Sahbi Ayachi
- Laboratory of Physico-Chemistry of Materials (LR01ES19), Faculty of Sciences, Avenue of the Environment 5019 Monastir, University of Monastir, Tunisia
| |
Collapse
|
6
|
Siddique MBA, Su J, Meng Y, Cheng SB. Electron transfer-mediated synergistic nonlinear optical response in the Ag n@C 18 (n = 4-6) complexes: A DFT study on the electronic structures and optical characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124069. [PMID: 38422934 DOI: 10.1016/j.saa.2024.124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Seeking highly efficient and stable non-linear optical (NLO) materials is crucial yet challenging, given their promising applications in laser diodes and photovoltaics. In this study, we employ the excess electron and charge transfer strategies to theoretically design three novel complexes, namely Agn@C18 (n = 4-6), by adsorbing silver clusters onto the cyclo[18]carbon ring (C18). Our aim is to investigate the NLO characteristics of these complexes using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The results reveal that the adsorption of Ag clusters onto C18 leads to a decrease in excitation energy and an increase in dipole moment and oscillator strengths, thereby significantly enhancing the hyperpolarizability of the complexes. Strikingly, among all these complexes, Ag6@C18 exhibits the highest first hyperpolarizability value of approximately 109496.2620 au calculated at the B3LYP/cc-PVDZ-pp level of theory, which is about 1.3 × 106 times higher than that of pure C18. This finding validates the effectiveness of the proposed strategies in enhancing the NLO response of the species. Moreover, the calculated UV-Vis absorption spectrum demonstrates that the Agn@C18 complexes with excess electrons exhibit absorption at longer wavelengths (ranging from 385 to 731 nm) compared to C18. In addition, the stability, chemical bonding, and charge transfer characteristics of the Agn@C18 (n = 4-6) complexes were also discussed. These findings highlight the potential of these complexes for the development of highly efficient NLO devices.
Collapse
Affiliation(s)
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yanan Meng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|