1
|
An Insight into the Polymerization Process of the Selected Carbazole Derivatives - Why does It not always Lead to a Polymer Formation? Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Chakraborty S, Stubbs AD, Kahan TF. Direct Observation of Anthracene Clusters at Ice Surfaces. J Am Chem Soc 2022; 144:751-756. [PMID: 34982936 DOI: 10.1021/jacs.1c09220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous processes can control atmospheric composition. Snow and ice present important, but poorly understood, reaction media that can greatly alter the composition of air in the cryosphere in polar and temperate regions. Atmospheric scientists struggle to reconcile model predictions with field observations in snow-covered regions due in part to experimental challenges associated with monitoring reactions at air-ice interfaces, and debate regarding reaction kinetics and mechanisms has persisted for over a decade. In this work, we use wavelength-resolved fluorescence microscopy to determine the distribution and chemical speciation of the pollutant anthracene at environmentally relevant frozen surfaces. Our results indicate that anthracene adsorbs to frozen surfaces in monomeric form, but that following lateral diffusion, molecules ultimately reside within brine channels at saltwater ice surfaces, and in micron-sized clusters at freshwater ice surfaces; emission profiles indicate extensive self-association. We also measure anthracene photodegradation kinetics in aqueous solution and artificial snow prepared from frozen freshwater and saltwater solutions. Our results suggest that anthracene─and likely other aromatic pollutants─undergo bimolecular photodegradation at the surface of freshwater ice and sea ice, but not at the surface of frozen organic matter. These results will improve predictions of pollutant fate and exposure risk in the cryosphere. The techniques used can be applied to numerous surfaces within and beyond the atmospheric sciences.
Collapse
Affiliation(s)
- Subha Chakraborty
- Dept. of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Annastacia D Stubbs
- Dept. of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.,Dept. of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244, United States
| | - Tara F Kahan
- Dept. of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.,Dept. of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244, United States
| |
Collapse
|
3
|
Köse ME. How to Predict Excited State Geometry by Using Empirical Parameters Obtained from Franck-Condon Analysis of Optical Spectrum. Chemphyschem 2021; 22:2078-2092. [PMID: 34351030 DOI: 10.1002/cphc.202100437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Indexed: 11/09/2022]
Abstract
Excited state geometries of molecules can be calculated with highly reliable wavefunction schemes. Most of such schemes, however, are applicable to small molecules and can hardly be viewed as error-free for excited state geometries. In this study, a theoretical approach is presented in which the excited state geometries of molecules can be predicted by using vibrationally resolved experimental absorption spectrum in combination with the theoretical modelling of vibrational pattern based on Franck-Condon approximation. Huang-Rhys factors have been empirically determined and used as input for revealing the structural changes occurring between the ground and the excited state geometries upon photoexcitation. Naphthalene molecule has been chosen as a test case to show the robustness of the proposed theoretical approach. Predicted 1B2u excited state geometry of the naphthalene has similar but slightly different bond length alternation pattern when compared with the geometries calculated with CIS, B3LYP, and CC2 methods. Excited state geometries of perylene and pyrene molecules are also determined with the presented theoretical approach. This powerful method can be applied to other molecules and specifically to relatively large molecules rather easily as long as vibrationally resolved experimental spectra are available to use.
Collapse
|
4
|
Veselý L, Susrisweta B, Heger D. Making good's buffers good for freezing: The acidity changes and their elimination via mixing with sodium phosphate. Int J Pharm 2021; 593:120128. [PMID: 33271311 DOI: 10.1016/j.ijpharm.2020.120128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Solutions of three Good's buffers (HEPES, MOPS, and MES), both pure and mixed with sodium phosphate buffers (Na-P), are investigated in terms of the freezing-induced acidity changes in their operational pH ranges. The Good's buffers have the tendency to basify upon freezing and, more intensively, at lower pHs. The acidity varies most prominently in MES, where the change may reach the value of two. Importantly, the Good's buffers are shown to mitigate the strong acidification in the Na-P buffer. Diverse concentrations of the Good's buffers are added to cancel out the strong, freezing-induced acidity drop in 50 mM Na-P that markedly contributes to the solution's acidity; the relevant values are 3 mM HEPES, 10 mM MOPS, and 80 mM MES. These buffer blends are therefore proposed to be applied in maintaining approximately the acidity of solutions even after the freezing process and, as such, should limit the stresses for frozen chemicals and biochemicals.
Collapse
Affiliation(s)
- Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Behera Susrisweta
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
5
|
Ondrušková G, Veselý L, Zezula J, Bachler J, Loerting T, Heger D. Using Excimeric Fluorescence to Study How the Cooling Rate Determines the Behavior of Naphthalenes in Freeze-Concentrated Solutions: Vitrification and Crystallization. J Phys Chem B 2020; 124:10556-10566. [PMID: 33156630 DOI: 10.1021/acs.jpcb.0c07817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We utilized fluorescence spectroscopy to learn about the molecular arrangement of naphthalene (Np) and 1-methylnaphthalene (MeNp) in frozen aqueous solutions. The freezing induces pronounced compound aggregation in the freeze-concentrated solution (FCS) in between the ice grains. The fluorescence spectroscopy revealed prevalent formation of a vitrified solution and minor crystallization of aromatic compounds. The FCS is shown as a specific environment, differing significantly from not only the pure compounds but also the ice surfaces. The results indicate marked disparity between the behavior of the Np and the MeNp; the cooling rate has a major impact on the former but not on the latter. The spectrum of the Np solution frozen at a faster cooling rate (ca 20 K/min) exhibited a temperature-dependent spectral behavior, whereas the spectrum of the solution frozen at a slower rate (ca 2 K/min) did not alter before melting. We interpret the observation through considering the varied composition of the FCS: Fast freezing leads to a higher water content expressed by the plasticizing effect, allowing molecular rearrangement, while slow cooling produces a more concentrated and drier environment. The experiments were conceived as generalizable for environmentally relevant pollutants and human-made freezing.
Collapse
Affiliation(s)
- Gabriela Ondrušková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Zezula
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrine 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrine 52c, A-6020 Innsbruck, Austria
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Bononi FC, Chen Z, Rocca D, Andreussi O, Hullar T, Anastasio C, Donadio D. Bathochromic Shift in the UV–Visible Absorption Spectra of Phenols at Ice Surfaces: Insights from First-Principles Calculations. J Phys Chem A 2020; 124:9288-9298. [DOI: 10.1021/acs.jpca.0c07038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Fernanda C. Bononi
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Zekun Chen
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| | - Dario Rocca
- Université de Lorraine, CNRS, LPTC, F-54000 Nancy, France
| | - Oliviero Andreussi
- Department of Physics, University of North Texas Denton, Texas 76203, United States
| | - Ted Hullar
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California Davis Davis, California 95616-8627, United States
| | - Davide Donadio
- Department of Chemistry, University of California Davis, Davis, California 95616-5270, United States
| |
Collapse
|
7
|
Hullar T, Bononi FC, Chen Z, Magadia D, Palmer O, Tran T, Rocca D, Andreussi O, Donadio D, Anastasio C. Photodecay of guaiacol is faster in ice, and even more rapid on ice, than in aqueous solution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1666-1677. [PMID: 32671365 DOI: 10.1039/d0em00242a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Snowpacks contain a wide variety of inorganic and organic compounds, including some that absorb sunlight and undergo direct photoreactions. How the rates of these reactions in, and on, ice compare to rates in water is unclear: some studies report similar rates, while others find faster rates in/on ice. Further complicating our understanding, there is conflicting evidence whether chemicals react more quickly at the air-ice interface compared to in liquid-like regions (LLRs) within the ice. To address these questions, we measured the photodegradation rate of guaiacol (2-methoxyphenol) in various sample types, including in solution, in ice, and at the air-ice interface of nature-identical snow. Compared to aqueous solution, we find modest rate constant enhancements (increases of 3- to 6-fold) in ice LLRs, and much larger enhancements (of 17- to 77-fold) at the air-ice interface of nature-identical snow. Our computational modeling suggests the absorption spectrum for guaiacol red-shifts and increases on ice surfaces, leading to more light absorption, but these changes explain only a small portion (roughly 2 to 9%) of the observed rate constant enhancements in/on ice. This indicates that increases in the quantum yield are primarily responsible for the increased photoreactivity of guaiacol on ice; relative to solution, our results suggest that the quantum yield is larger by a factor of roughly 3-6 in liquid-like regions and 12-40 at the air-ice interface.
Collapse
Affiliation(s)
- Ted Hullar
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vetráková Ľ, Neděla V, Runštuk J, Tihlaříková E, Heger D, Shalaev E. Dynamical in-situ observation of the lyophilization and vacuum-drying processes of a model biopharmaceutical system by an environmental scanning electron microscope. Int J Pharm 2020; 585:119448. [PMID: 32461002 DOI: 10.1016/j.ijpharm.2020.119448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023]
Abstract
The paper discusses the real-time monitoring of the changing sample morphology during the entire lyophilization (freeze-drying) and vacuum-drying processes of model biopharmaceutical solutions by using an environmental scanning electron microscope (ESEM); the device's micromanipulators were used to study the interior of the samples in-situ without exposing the samples to atmospheric water vapor. The individual collapse temperatures (Tc) of the formulations, pure bovine serum albumin (BSA) and BSA/sucrose mixtures, ranged from -5 to -29 °C. We evaluated the impact of the freezing method (spontaneous freezing, controlled ice nucleation, and spray freezing) on the morphologies of the lyophiles at the constant drying temperature of -20 °C. The formulations with Tc above -20 °C resulted in the lyophiles' morphologies significantly dependent on the freezing method. We interpret the observations as an interplay of the freezing rates and directionalities, both of which markedly influence the morphologies of the frozen formulations, and, subsequently, the drying process and the mechanical stability of the freeze-dried cake. The formulation with Tc below -20 °C yielded a collapsed cake with features independent of the freezing method. The vacuum-drying produced a material with a smooth and pore-free surface, where deep cracks developed at the end of the process.
Collapse
Affiliation(s)
- Ľubica Vetráková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Runštuk
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Evgenyi Shalaev
- Pharmaceutical Development, Allergan plc, Irvine, CA, United States.
| |
Collapse
|
9
|
Beaubras F, Rueff JM, Perez O, Veillon F, Caignaert V, Lohier JF, Cardin J, Rogez G, Jestin C, Couthon H, Jaffrès PA. M(H 2O)(PO 3C 10H 6OH)·(H 2O) 0.5 (M = Co, Mn, Zn, Cu): a new series of layered metallophosphonate compounds obtained from 6-hydroxy-2-naphthylphosphonic acid. Dalton Trans 2020; 49:3877-3891. [PMID: 31859323 DOI: 10.1039/c9dt03947c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four new metallophosphonates M(H2O)(PO3C10H6OH)·(H2O)0.5 (M = Mn, Co, Cu, Zn) were obtained as single crystal and polycrystalline powders by hydrothermal synthesis from the precursors 6-hydroxy-2-naphthylphosphonic acid and the corresponding metal salts. These analogous hybrids crystalized in the space group P121/c1 in a lamellar structure. Their layered structures consisted of inorganic [M(H2O)(PO3C)] layers stacked with organic bilayers of 6-hydroxy-2-naphthyl moieties "HO-C10H6" and free water molecules. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction and Le Bail refinement for the powder sample. The removal of water upon heating at 250 °C was studied by thermogravimetric analysis and temperature-dependent powder X-ray diffraction. Their magnetic properties were studied by SQUID magnetometry and show antiferromagnetic behavior for the Co analogue and the occurrence of a canted antiferromagnetic order at TN = 12.2 K for the Mn analogue. The Cu compound displayed an unprecedented ferromagnetic behavior. Their absorption and luminescence properties were investigated and revealed that the ligand and the compounds displayed a common behavior below a wavelength of 400 nm. Specific absorption bands were found in the compounds with Co2+ and Cu2+ at 539 nm and 849 nm, respectively. Moreover, particular luminescence bands were found for the compounds with Mn2+, Co2+ and Zn2+ at 598 nm, 551 nm and 530 and 611 nm, respectively.
Collapse
Affiliation(s)
- Félicien Beaubras
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd Maréchal Juin, 14050 Caen Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Miyagawa A, Harada M, Fukuhara G, Okada T. Space Size-Dependent Transformation of Tetraphenylethylene Carboxylate Aggregates by Ice Confinement. J Phys Chem B 2020; 124:2209-2217. [PMID: 32097006 DOI: 10.1021/acs.jpcb.9b11345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetraphenylethylene carboxylate (TPEC) aggregates are transformed by ice confinement, which is controlled by the initial concentration of sucrose employed as a cryoprotectant and temperature. The freezing of aqueous sucrose leads to the formation of micro- or nanoliquid phase confined in ice. Aggregation-induced emission (AIE) of tetraphenylethylene carboxylate (TPEC) in the ice-confined space is explored using fluorescence spectroscopy and lifetime measurements. The characteristics of AIE in the ice-confined space strongly depend on the initial sucrose concentration and temperature, which determine the size of the liquid phase. The AIE of TPEC in the ice-confined space can be classified into three regimes in terms of spectroscopic features. Loosely packed J aggregates of TPEC are formed in the microliquid phase (>2 μm). The fluorescence intensity increases, and the wavelength is hypsochromically shifted with a decrease in the size of the space, indicating that the molecular arrangement in the aggregate depends on the space size. The fluorescence lifetimes indicate polydisperse, loosely packed aggregation. No further change in aggregate structure is observed once the liquid phase size is decreased to ∼2 μm, and a spectroscopically identical structure is maintained upon further reduction of the space size to ∼0.5 μm. The molecular arrangement in the aggregate is independent of the space size in this regime. However, when the size of the space becomes smaller than ∼0.5 μm, the aggregate structure again starts to change into a more tightly packed aggregate and a hypsochromic shift of the fluorescence wavelength occurs again. The fluorescence lifetime indicates monodispersed aggregation in this submicrospace.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
11
|
Chatterjee K, Dopfer O. Protonation of Naphthalene–(Water)n Nanoclusters: Intracluster Proton Transfer to Hydration Shell Revealed by Infrared Photodissociation Spectroscopy. J Phys Chem A 2020; 124:1134-1151. [DOI: 10.1021/acs.jpca.9b11779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
12
|
Imrichová K, Veselý L, Gasser TM, Loerting T, Neděla V, Heger D. Vitrification and increase of basicity in between ice Ihcrystals in rapidly frozen dilute NaCl aqueous solutions. J Chem Phys 2019; 151:014503. [DOI: 10.1063/1.5100852] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kamila Imrichová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, 61264 Brno, Czech Republic
| | - Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tobias M. Gasser
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Vilém Neděla
- Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, 61264 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
13
|
Hullar T, Magadia D, Anastasio C. Photodegradation Rate Constants for Anthracene and Pyrene Are Similar in/on Ice and in Aqueous Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12225-12234. [PMID: 30251528 DOI: 10.1021/acs.est.8b02350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Snowpacks contain a variety of chemicals, including organic pollutants such as toxic polycyclic aromatic hydrocarbons (PAHs). While PAHs undergo photodegradation in snow and ice, the rates of these reactions remain in debate. Some studies report that photochemical reactions in snow proceed at rates similar to those expected in a supercooled aqueous solution, but other studies report faster reaction rates, particularly at the air-ice interface (i.e., the quasi-liquid layer, or QLL). In addition, one study reported a surprising nonlinear dependence on photon flux. Here we examine the photodegradation of two common PAHs, anthracene and pyrene, in/on ice and in solution. For a given PAH, rate constants are similar in aqueous solution, in internal liquid-like regions of ice, and at the air-ice interface. In addition, we find the expected linear relationship between reaction rate constant and photon flux. Our results indicate that rate constants for the photochemical loss of PAHs in, and on, snow and ice are very similar to those in aqueous solution, with no enhancement at the air-ice interface.
Collapse
Affiliation(s)
- Ted Hullar
- Department of Land, Air and Water Resources , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Danielle Magadia
- Department of Land, Air and Water Resources , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
- Now at California Department of Food and Agriculture , 3292 Meadowview , Sacramento , California 95832 , United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
14
|
Bloyet C, Rueff JM, Cardin J, Caignaert V, Doualan JL, Lohier JF, Jaffrès PA, Raveau B. Excimer and Red Luminescence Due to Aggregation-Induced Emission in Naphthalene Based Zinc Phosphonate. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Clarisse Bloyet
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT; 14000 Caen France
| | | | - Julien Cardin
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, CIMAP; 14000 Caen France
| | | | | | | | | | - Bernard Raveau
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT; 14000 Caen France
| |
Collapse
|
15
|
Chatterjee K, Dopfer O. Microhydration of PAH + cations: evolution of hydration network in naphthalene +-(H 2O) n clusters ( n ≤ 5). Chem Sci 2018; 9:2301-2318. [PMID: 29719704 PMCID: PMC5903421 DOI: 10.1039/c7sc05124g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
The interaction of polycyclic aromatic hydrocarbon molecules with water (H2O = W) is of fundamental importance in chemistry and biology. Herein, size-selected microhydrated naphthalene cation nanoclusters, Np+-W n (n ≤ 5), are characterized by infrared photodissociation (IRPD) spectroscopy in the C-H and O-H stretch range to follow the stepwise evolution of the hydration network around this prototypical PAH+ cation. The IRPD spectra are highly sensitive to the hydration structure and are analyzed by dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ) to determine the predominant structural isomers. For n = 1, W forms a bifurcated CH···O ionic hydrogen bond (H-bond) to two acidic CH protons of the bicyclic ring. For n ≥ 2, the formation of H-bonded solvent networks dominates over interior ion solvation, because of strong cooperativity in the former case. For n ≥ 3, cyclic W n solvent structures are attached to the CH protons of Np+. However, while for n = 3 the W3 ring binds in the CH···O plane to Np+, for n ≥ 4 the cyclic W n clusters are additionally stabilized by stacking interactions, leading to sandwich-type configurations. No intracluster proton transfer from Np+ to the W n solvent is observed in the studied size range (n ≤ 5), because of the high proton affinity of the naphthyl radical compared to W n . This is different from microhydrated benzene+ clusters, (Bz-W n )+, for which proton transfer is energetically favorable for n ≥ 4 due to the much lower proton affinity of the phenyl radical. Hence, because of the presence of polycyclic rings, the interaction of PAH+ cations with W is qualitatively different from that of monocyclic Bz+ with respect to interaction strength, structure of the hydration shell, and chemical reactivity. These differences are rationalized and quantified by quantum chemical analysis using the natural bond orbital (NBO) and noncovalent interaction (NCI) approaches.
Collapse
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik , Technische Universität Berlin , Hardenbergstr. 36 , 10623 Berlin , Germany . ; Tel: +49 30 31423018
| | - Otto Dopfer
- Institut für Optik und Atomare Physik , Technische Universität Berlin , Hardenbergstr. 36 , 10623 Berlin , Germany . ; Tel: +49 30 31423018
| |
Collapse
|
16
|
Corrochano P, Nachtigallová D, Klán P. Photooxidation of Aniline Derivatives Can Be Activated by Freezing Their Aqueous Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13763-13770. [PMID: 29148724 DOI: 10.1021/acs.est.7b04510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A combined experimental and computational approach was used to investigate the spectroscopic properties of three different aniline derivatives (aniline, N,N-dimethylaniline, and N,N-diethylaniline) in aqueous solutions and at the air-ice interface in the temperature range of 243-298 K. The absorption and diffuse reflectance spectra of ice samples prepared by different techniques, such as slow or shock freezing of the aqueous solutions or vapor deposition on ice grains, exhibited unequivocal bathochromic shifts of 10-15 nm of the absorption maxima of anilines in frozen samples compared to those in liquid aqueous solutions. DFT and SCS-ADC(2) calculations showed that contaminant-contaminant and contaminant-ice interactions are responsible for these shifts. Finally, we demonstrate that irradiation of anilines in the presence of a hydrogen peroxide/O2 system by wavelengths that overlap only with the red-shifted absorption tails of anilines in frozen samples (while having a marginal overlap with their spectra in liquid solutions) can almost exclusively trigger a photochemical oxidation process. Mechanistic and environmental considerations are discussed.
Collapse
Affiliation(s)
- Pablo Corrochano
- RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Petr Klán
- RECETOX, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University , Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
17
|
Syntheses, structures and catalytic activities of two cyclopalladated complexes derived from N'-(2-naphthylidene)benzohydrazide. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a “pH memory” effect? Int J Pharm 2017; 530:316-325. [DOI: 10.1016/j.ijpharm.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022]
|
19
|
Chatterjee K, Dopfer O. Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+–water. Phys Chem Chem Phys 2017; 19:32262-32271. [DOI: 10.1039/c7cp06893j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of infrared spectroscopy and quantum chemical calculations unravels the salient properties of the bifurcated CH⋯O ionic hydrogen bond typical for the PAH+–H2O interaction.
Collapse
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
20
|
Malongwe JK, Nachtigallová D, Corrochano P, Klán P. Spectroscopic Properties of Anisole at the Air-Ice Interface: A Combined Experimental-Computational Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5755-5764. [PMID: 27243785 DOI: 10.1021/acs.langmuir.6b01187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A combined experimental and computational approach was used to investigate the spectroscopic properties of anisole in aqueous solutions and at the ice-air interface in the temperature range of 77-298 K. The absorption, diffuse reflectance, and emission spectra of ice samples containing anisole prepared by different techniques, such as slow freezing (frozen aqueous solutions), shock freezing (ice grains), or anisole vapor deposition on ice grains, were measured to evaluate changes in the contaminated ice matrix that occur at different temperatures. It was found that the position of the lowest absorption band of anisole and its tail shift bathochromically by ∼4 nm in frozen samples compared to liquid aqueous solutions. On the other hand, the emission spectra of aqueous anisole solutions were found to fundamentally change upon freezing. While one emission band (∼290 nm) was observed under all circumstances, the second band at ∼350 nm, assigned to an anisole excimer, appeared only at certain temperatures (150-250 K). Its disappearance at lower temperatures is attributed to the formation of crystalline anisole on the ice surface. DFT and ADC(2) calculations were used to interpret the absorption and emission spectra of anisole monomer and dimer associates. Various stable arrangements of the anisole associates were found at the disordered water-air interface in the ground and excited states, but only those with a substantial overlap of the aromatic rings are manifested by the emission band at ∼350 nm.
Collapse
Affiliation(s)
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | | | | |
Collapse
|
21
|
Krausková Ľ, Procházková J, Klašková M, Filipová L, Chaloupková R, Malý S, Damborský J, Heger D. Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants. Int J Pharm 2016; 509:41-49. [PMID: 27224008 DOI: 10.1016/j.ijpharm.2016.05.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
Abstract
Freezing and lyophilization are often used for stabilization of biomolecules; however, this sometimes results in partial degradation and loss of biological function in these molecules. In this study we examined the effect of freezing-induced acidity changes on denaturation of the model enzyme haloalkane dehalogenase under various experimental conditions. The effective local pH of frozen solutions is shown to be the key causal factor in protein stability. To preserve the activity of frozen-thawed enzymes, acidity changes were prevented by the addition of an ionic cryoprotectant, a compound which counteracts pH changes during freezing due to selective incorporation of its ions into the ice. This approach resulted in complete recovery of enzyme activity after multiple freeze-thaw cycles. We propose the utilization of ionic cryoprotectants as a new and effective cryopreservation method in research laboratories as well as in industrial processes.
Collapse
Affiliation(s)
- Ľubica Krausková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A29, 625 00 Brno, Czech Republic
| | - Jitka Procházková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno, Czech Republic
| | - Martina Klašková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno, Czech Republic
| | - Lenka Filipová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno, Czech Republic
| | - Radka Chaloupková
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A29, 625 00 Brno, Czech Republic
| | - Stanislav Malý
- Central Institute for Supervising and Testing in Agriculture, Hroznová 2, CZ-656 06, Czech Republic
| | - Jiří Damborský
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A29, 625 00 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A8, 625 00 Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A29, 625 00 Brno, Czech Republic.
| |
Collapse
|
22
|
Donaldson DJ, Kahan TF. Reply to “Comment on ‘Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces’ and on ‘Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces’”. J Phys Chem A 2015; 119:10764-5. [DOI: 10.1021/acs.jpca.5b09045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. J. Donaldson
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tara F. Kahan
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
23
|
Krausko J, Ondrušková G, Heger D. Comment on “Photolysis of Polycyclic Aromatic Hydrocarbons on Water and Ice Surfaces” and on “Nonchromophoric Organic Matter Suppresses Polycyclic Aromatic Hydrocarbon Photolysis in Ice and at Ice Surfaces”. J Phys Chem A 2015; 119:10761-3. [DOI: 10.1021/acs.jpca.5b08276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ján Krausko
- Department
of Chemistry and
RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Gabriela Ondrušková
- Department
of Chemistry and
RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dominik Heger
- Department
of Chemistry and
RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|