1
|
Yarbrough J, Bent SF. Area-Selective Deposition by Cyclic Adsorption and Removal of 1-Nitropropane. J Phys Chem A 2023; 127:7858-7868. [PMID: 37683085 DOI: 10.1021/acs.jpca.3c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The ever-greater complexity of modern electronic devices requires a larger chemical toolbox to support their fabrication. Here, we explore the use of 1-nitropropane as a small molecule inhibitor (SMI) for selective atomic layer deposition (ALD) on a combination of SiO2, Cu, CuOx, and Ru substrates. Results using water contact angle goniometry, Auger electron spectroscopy, and infrared spectroscopy show that 1-nitropropane selectively chemisorbs to form a high-quality inhibition layer on Cu and CuOx at an optimized temperature of 100 °C, but not on SiO2 and Ru. When tested against Al2O3 ALD, however, a single pulse of 1-nitropropane is insufficient to block deposition on the Cu surface. Thus, a new multistep process is developed for low-temperature Al2O3 ALD that cycles through exposures of 1-nitropropane, an aluminum metalorganic precursor, and coreactants H2O and O3, allowing the SMI to be sequentially reapplied and etched. Four different Al ALD precursors were investigated: trimethylaluminum (TMA), triethylaluminum (TEA), tris(dimethylamido)aluminum (TDMAA), and dimethylaluminum isopropoxide (DMAI). The resulting area-selective ALD process enables up to 50 cycles of Al2O3 ALD on Ru but not Cu, with 98.7% selectivity using TEA, and up to 70 cycles at 97.4% selectivity using DMAI. This work introduces a new class of SMI for selective ALD at lower temperatures, which could expand selective growth schemes to biological or organic substrates where temperature instability may be a concern.
Collapse
Affiliation(s)
- Josiah Yarbrough
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Energy Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Vin N, Carstensen HH, Herbinet O, Bourgalais J, Alzueta MU, Battin-Leclerc F. A Combined Experimental and Modeling Study on Isopropyl Nitrate Pyrolysis. J Phys Chem A 2023; 127:2123-2135. [PMID: 36821725 DOI: 10.1021/acs.jpca.2c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Alkyl nitrates thermally decompose by homolytic cleavage of the weak nitrate bond at very low temperatures (e.g., around 500 K at reaction times of a few seconds). This provides the opportunity to study the subsequent chemistry of the initially formed radical (or its subsequent pyrolysis products, if unstable) and nitrogen dioxide at such mild conditions. In this work this idea is applied to isopropyl nitrate (iPN) pyrolysis, which is studied in a tubular reactor at atmospheric pressure, temperatures ranging from 373 to 773 K, and residence times of around 2 s. At the experimental conditions, iPN decomposition starts at 473 K with O-N bond fission producing isopropoxy radical (i-C3H7O) and NO2. i-C3H7O is rapidly converted to acetaldehyde (CH3CHO), which is the most abundant product detected, and methyl radicals. Other major products detected are formaldehyde (CH2O), methanol (CH3OH), nitromethane (CH3NO2), NO, methane, formamide (CHONH2), and methyl nitrite (CH3ONO). Four literature nitrogen chemistry models─three of those augmented with iPN specific reactions─have been tested for their ability to predict the iPN decomposition and product profiles. The mechanism by the Curran group performs best, but it still underpredicts the observed high formaldehyde and methanol yields. A rate analysis indicates that the branching ratio of the reaction between methyl radicals and nitrogen dioxide is of significant importance. Based on recent theoretical and experimental data, new rate expressions for the two reactions CH3 + NO2 → CH3O + NO and CH3 + NO2 + He → CH3ONO2 + He are calculated and incorporated in the kinetic models. It is shown that this change clearly improves the predictions, although additional work is needed to achieve good agreement between calculated and measured species profiles.
Collapse
Affiliation(s)
- Nicolas Vin
- Université de Lorraine, CNRS, LRGP, Nancy 54000, France
| | - Hans-Heinrich Carstensen
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zagaroza 50018, Spain.,Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza, Zaragoza 50018, Spain
| | | | | | | | | |
Collapse
|
3
|
Shuber NJ, Tabor DP, North SW. Theoretical Investigation of the Ground State Dissociation Pathways of CH2NO2. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Senanayake PS, Syrlybaeva RR, Talipov MR. Unusual In-plane Aromaticity Facilitates Intramolecular Hydrogen Transfer in Long-Bonded cis-Isonitrosyl Methoxide. J Phys Chem A 2022; 126:6826-6833. [PMID: 36049165 DOI: 10.1021/acs.jpca.2c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogen-atom transfer from methoxy radical to nitric oxide, leading to the formation of formaldehyde and nitroxyl, represents a secondary reaction of photodissociation of methyl nitrite, which is used as rocket fuel. In this study, we explored the potential energy profile of the hydrogen-atom transfer using the electronic structure calculations at the DLPNO-CCSD(T)/aug-cc-pVTZ level of theory for two isomeric forms (cis and trans) of the pre-reaction complex. The cis-oriented pre-reaction complex has a weak elongated O─O bond, which gets further elongated in the hydrogen transfer transition state. This O─O bond stabilizes the pre-reaction complex by 32.9 kJ/mol. The O─O-induced stabilization is even greater for the transition state (48.2 kJ/mol), which was unexpected because of the larger O─O distance in the transition state structure. To address this paradox, we performed the electronic structure analysis of the reaction participants using the valence bond (VB) theory, natural resonance theory, topological analysis of the electron density and its derivatives, and analysis of the electron localization function distribution. This combined analysis led to the conclusion that the cis-transition state for hydrogen transfer, instead of being directly stabilized by the O─O interaction, gained substantial stabilization from the in-plane five-center six-electron aromaticity.
Collapse
Affiliation(s)
- Punhasa S Senanayake
- Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Raulia R Syrlybaeva
- Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Marat R Talipov
- Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
5
|
Chang P, Zhou P, Liu J, Yin S. Theoretical study on autocatalytic reaction in thermal decomposition of nitromethane. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Ford J, Seritan S, Zhu X, Sakano MN, Islam MM, Strachan A, Martínez TJ. Nitromethane Decomposition via Automated Reaction Discovery and an Ab Initio Corrected Kinetic Model. J Phys Chem A 2021; 125:1447-1460. [PMID: 33569957 DOI: 10.1021/acs.jpca.0c09168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We explore the systematic construction of kinetic models from in silico reaction data for the decomposition of nitromethane. Our models are constructed in a computationally affordable manner by using reactions discovered through accelerated molecular dynamics simulations using the ReaxFF reactive force field. The reaction paths are then optimized to determine reaction rate parameters. We introduce a reaction barrier correction scheme that combines accurate thermochemical data from density functional theory with ReaxFF minimal energy paths. We validate our models across different thermodynamic regimes, showing predictions of gas phase CO and NO concentrations and high-pressure induction times that are similar to experimental data. The kinetic models are analyzed to find fundamental decomposition reactions in different thermodynamic regimes.
Collapse
Affiliation(s)
- Jason Ford
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Stefan Seritan
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Xiaolei Zhu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Michael N Sakano
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Md Mahbub Islam
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
Palazzetti F, Tsai PY. Photodissociation Dynamics of CO-Forming Channels on the Ground-State Surface of Methyl Formate at 248 nm: Direct Dynamics Study and Assessment of Generalized Multicenter Impulsive Models. J Phys Chem A 2021; 125:1198-1220. [PMID: 33507759 DOI: 10.1021/acs.jpca.0c10464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The photodissociation dynamics of methyl formate in the electronic ground state S0, initiated by a 248 nm-wavelength laser, is studied by direct dynamics simulations. We analyze five channels, where four of them have as products CH3OH + CO, one leading to the formation of three fragments, H2CO + H2 + CO, and a channel characterized by a roaming transition state. The analysis of energy distribution among the degrees of freedom of the product and the comparison with experimental results previously published by other groups provide the ingredients to distinguish the examined dissociation pathways. The interpretation of the results proves that the characterization of dissociation mechanisms must rely on a dynamics approach involving multiple electronic states, including considerations on the features of the S1/S0 conical intersection. Here, we also assess the generalized multicenter impulsive model, GMCIM, that has been designed for dissociation processes with exit barriers, and the energy distribution in the products is predicted on the basis of information from the saddle points and the intrinsic reaction coordinates. Main features, advantages, limits, and future perspectives of the method are reported and discussed.
Collapse
Affiliation(s)
- Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Perugia 06123, Italy
| | - Po-Yu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
8
|
Fuller ME, Morsch P, Preußker M, Goldsmith CF, Heufer KA. The impact of NO x addition on the ignition behaviour of n-pentane. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00055a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern engine concepts present several opportunities for nitrogen combustion chemistry, particularly the interaction of NOx (NO + NO2) with fuel fragments and products of partial combustion.
Collapse
Affiliation(s)
- Mark E. Fuller
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| | - Philipp Morsch
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| | - Matthias Preußker
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| | | | - K. Alexander Heufer
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
9
|
Vaghjiani GL, Sun H, Chambreau SD. Experimental and Theoretical Investigations of the Radical-Radical Reaction: N 2H 3 + NO 2. J Phys Chem A 2020; 124:10434-10446. [PMID: 33264012 DOI: 10.1021/acs.jpca.0c07985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N2H3 + NO2 reaction plays a key role during the early stages of hypergolic ignition between N2H4 and N2O4. Here for the first time, the reaction kinetics of N2H3 in excess NO2 was studied in 2.0 Torr of N2 and in the narrow temperature range 298-348 K in a pulsed photolysis flow-tube reactor coupled to a mass spectrometer. The temporal profile of the product, HONO, was determined by direct detection of the m/z +47 amu ion signal. For each chosen [NO2], the observed [HONO] trace was fitted to a biexponential kinetics expression, which yielded a value for the pseudo-first-order rate coefficient, k', for the reaction of N2H3 with NO2. The slope of the plot of k' versus [NO2] yielded a value for the observed bimolecular rate coefficient, kobs, which could be fitted to an Arrhenius expression of (2.36 ± 0.47) × 10-12 exp((520 ± 350)/T) cm3 molecule-1 s-1. The errors are 1σ and include estimated uncertainties in the NO2 concentration. The potential energy surface of N2H3 + NO2 was investigated by advanced ab initio quantum chemistry theories. It was found that the reaction occurs via a complex reaction mechanism, and all of the reaction channels have transition state energies below that of the entrance asymptote. The radical-radical addition forms the N2H3NO2 adducts, while roaming-mediated isomerization reactions yield the N2H3ONO isomers, which undergo rapid dissociation reactions to several sets of distinct products. The RRKM multiwell master equation simulations revealed that the major product channel involves the formation of trans-HONO and trans-N2H2 below 500 K and the formation of NO + NH2NHO above 500 K, which is nearly pressure independent. The pressure-dependent rate coefficients of the product channels were computed over a wide pressure-temperature range, which encompassed the experimental data.
Collapse
Affiliation(s)
- Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States
| | | | | |
Collapse
|
10
|
Ghoshal S, Pramanik A, Sarkar P. Theoretical Investigations on the Possibility of Prebiotic HCN Formation via O-Addition Reactions. J Phys Chem A 2020; 124:4782-4792. [PMID: 32401514 DOI: 10.1021/acs.jpca.0c02538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Until now, reactions between methane photolysis products (CH3•, CH2) and active N atom or reactive NO radical are proposed as routes of HCN formation in the prebiotic Earth. Scientists think that the reducing atmosphere of primitive Earth was made of H2, He, N2, NO, CH4, H2O, CO2, etc., and there was no molecular oxygen. However, it has been evident from experiments that the vacuum ultraviolet (VUV) photolysis of CO2 can produce atomic oxygen. Therefore, it can be presumed that atomic oxygen was likely present in early Earth's atmosphere. Was there any impact of atomic oxygen in production of early atmospheric HCN for the emergence of life? To hunt for the answer, we have employed computational methods to study the mechanism and kinetics of CH3NO + O(1D) and CH2NO• + O(3P) addition reactions. Current study suggests that the addition of O(1D) into nitrosomethane (CH3NO) and the addition of O(3P) into nitrosomethylene radical (CH2NO•) can efficiently produce HCN through an effectively barrierless pathway. At STP, Bartis-Widom phenomenological loss rate coefficients of O(1D) and O(3P) are obtained as 2.47 × 10-12 and 4.67 × 10-11 cm3 molecule-1 s-1, respectively. We propose that addition reactions of atomic oxygen with CH3NO and CH2NO• might act as a potential source for early atmospheric HCN.
Collapse
Affiliation(s)
- Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India
| | - Anup Pramanik
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.,Department of Chemistry, Sidho-Kanho-Birsha University, Purulia-723104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India
| |
Collapse
|
11
|
Inversely deducing the initiation mechanism of energetic materials under pressure from possible defect states in nitromethane. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Abstract
Roaming reactions were first clearly identified in photodissociation of formaldehyde 15 years ago, and roaming dynamics are now recognized as a universal aspect of chemical reactivity. These reactions typically involve frustrated near-dissociation of a quasibound system to radical fragments, followed by reorientation at long range and intramolecular abstraction. The consequences can be unexpected formation of molecular products, depletion of the radical pool in chemical systems, and formation of products with unusual internal state distributions. In this review, I examine some current aspects of roaming reactions with an emphasis on experimental results, focusing on possible quantum effects in roaming and roaming dynamics in bimolecular systems. These considerations lead to a more inclusive definition of roaming reactions as those for which key dynamics take place at long range.
Collapse
Affiliation(s)
- Arthur G. Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
13
|
Chen X, Goldsmith CF. Accelerating Variational Transition State Theory via Artificial Neural Networks. J Phys Chem A 2020; 124:1038-1046. [DOI: 10.1021/acs.jpca.9b11507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xi Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - C. Franklin Goldsmith
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
14
|
Yang M, Wu Y, Tang C, Liu Y, Huang Z. Auto-ignition behaviors of nitromethane in diluted oxygen in a rapid compression machine: Critical conditions for ignition, ignition delay times measurements, and kinetic modeling interpretation. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:52-61. [PMID: 31151040 DOI: 10.1016/j.jhazmat.2019.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/28/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
In this work, the weakest thermodynamic conditions for the auto-ignition of mixtures containing nitromethane were experimentally determined by using the rapid compression machine facility. Results show there is a narrow weak ignition region between ignition and non-ignition. The weak ignition region would disappear with the increase of the EOC (end of compression) pressure and nitromethane concentration. In addition, the ignition delay times for successful auto-ignition for different nitromethane concentrations and equivalence ratio mixtures were measured and compared. Results show that the dependence of nitromethane ignition on the equivalence ratio is weak. Subsequently, the measured ignition delay time data were employed to validate several kinetic models in literature and our previous model shows better agreement with experimental results, as well as other available literature data. Sensitivity analysis for the model reveals the importance of unimolecular decomposition and H-abstraction reactions for the ignition delay times in the temperature range studied herein. Finally, critical conditions for nitromethane ignition under extended conditions that are beyond the ability of the experimental facility were predicted.
Collapse
Affiliation(s)
- Meng Yang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingtao Wu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenglong Tang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yang Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zuohua Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
15
|
Fuller ME, Goldsmith CF. Shock Tube Laser Schlieren Study of the Pyrolysis of Isopropyl Nitrate. J Phys Chem A 2019; 123:5866-5876. [PMID: 31192602 DOI: 10.1021/acs.jpca.9b03325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The decomposition of isopropyl nitrate was measured behind incident shock waves using laser schlieren densitometry in a diaphragmless shock tube. Experiments were conducted over the temperature range of 700-1000 K and at pressures of 71, 126, and 240 Torr. Electronic structure theory and RRKM Master Equation methods were used to predict the decomposition kinetics. RRKM/ME parameters were optimized against the experimental data to provide an accurate prediction over a broader range of conditions. The initial decomposition i-C3H7ONO2 ⇌ i-C3H7O + NO2 has a high-pressure limit rate coefficient of 5.70 × 1022T-1.80 exp[-21287.5/T] s-1. A new chemical kinetic mechanism was developed to model the chemistry after the initial dissociation. A new shock tube module was developed for Cantera, which allows for arbitrarily large mechanisms in the simulation of laser schlieren experiments. The present work is in good agreement with previous experimental studies.
Collapse
Affiliation(s)
- Mark E Fuller
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - C Franklin Goldsmith
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
16
|
Fuller ME, Skowron M, Tranter RS, Goldsmith CF. A modular, multi-diagnostic, automated shock tube for gas-phase chemistry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:064104. [PMID: 31255004 DOI: 10.1063/1.5095077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
A new shock tube has been constructed for investigations of high-temperature chemical kinetics with an emphasis on combustion chemistry. This instrument includes a diaphragmless driver and electrical control of valving. A diaphragmless design significantly improves repeatability of experimental conditions vs the use of diaphragms and leads to an approximate order of magnitude reduction in turnaround time between experiments. Electrical control of valves, combined with diaphragmless operation, also enables remote and automated operation of the shock tube. The design allows for both incident and reflected shock experiments with multiple diagnostics. The performance of the shock tube is demonstrated by reproducing previous literature measurements on the unimolecular decomposition of isobutyl nitrite and cyclohexene.
Collapse
Affiliation(s)
- Mark E Fuller
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Mal Skowron
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| | - Robert S Tranter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C Franklin Goldsmith
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
17
|
Kiselev VG, Muravyev NV, Monogarov KA, Gribanov PS, Asachenko AF, Fomenkov IV, Goldsmith CF, Pivkina AN, Gritsan NP. Toward reliable characterization of energetic materials: interplay of theory and thermal analysis in the study of the thermal stability of tetranitroacetimidic acid (TNAA). Phys Chem Chem Phys 2018; 20:29285-29298. [PMID: 30430162 DOI: 10.1039/c8cp05619f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermal stability of energetic materials, being of the utmost importance for safety issues, is often considered in terms of kinetics, e.g., the Arrhenius parameters of the decomposition rate constant. The latter, in turn, are commonly determined using conventional thermoanalytical procedures with the use of simple Kissinger or Ozawa methods for kinetic data processing. However, thermal decomposition of energetic materials typically occurs via numerous exo- and endothermal processes including fast parallel reactions, phase transitions, autocatalysis, etc. This leads to numerous drawbacks of simple approaches. In this paper, we proposed a new methodology for characterization of the thermochemistry and thermal stability of melt-cast energetic materials, which is comprised of a complementary set of experimental and theoretical techniques in conjunction with a suitable kinetic model. With the aid of the proposed methodology, we studied in detail a novel green oxidizer, tetranitroacetimidic acid (TNAA). The experimental mass loss kinetics in the melt was perfectly fitted with a model comprised of zero-order reaction (sublimation or evaporation) and first-order thermal decomposition of TNAA with the effective Arrhenius parameters Ea = 41.0 ± 0.2 kcal mol-1 and log(A/s-1) = 20.2 ± 0.1. We rationalized the experimental findings on the basis of highly accurate CCSD(T)-F12 quantum chemical calculations. Computations predict that thermolysis of TNAA involves an intricate interplay of multiple decomposition channels of the three tautomers, which are equilibrated via either monomolecular reactions or concerted double hydrogen atom transfer in the H-bonded dimers; the calculated Arrhenius parameters of the effective rate constant coincide well with experiment. Most importantly, calculations provide detailed mechanistic evidence missing in the thermoanalytical experiment and explain formation of the experimentally observed primary products N2O and NO2. Along with the kinetics and mechanism of decomposition, the proposed approach yields accurate thermochemistry and phase change data of TNAA.
Collapse
Affiliation(s)
- Vitaly G Kiselev
- Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lin KC, Tsai PY, Chao MH, Nakamura M, Kasai T, Lombardi A, Palazzetti F, Aquilanti V. Roaming signature in photodissociation of carbonyl compounds. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1488951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (ROC)
| | - Po-Yu Tsai
- Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan (ROC)
| | - Meng-Hsuan Chao
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Masaaki Nakamura
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
| | - Toshio Kasai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan (ROC)
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Andrea Lombardi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Consortium for Computational Molecular and Materials Sciences (CMS)2, Perugia, Italy
| | - Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
19
|
Abstract
The phenomenon of roaming in chemical reactions has now become both commonly observed in experiment and extensively supported by theory and simulations. Roaming occurs in highly-excited molecules when the trajectories of atomic motion often bypass the minimum energy pathway and produce reaction in unexpected ways from unlikely geometries. The prototypical example is the unimolecular dissociation of formaldehyde (H2CO), in which the "normal" reaction proceeds through a tight transition state to yield H2 + CO but for which a high fraction of dissociations take place via a "roaming" mechanism in which one H atom moves far from the HCO, almost to dissociation, and then returns to abstract the second H atom. We review below the theories and simulations that have recently been developed to address and understand this new reaction phenomenon.
Collapse
Affiliation(s)
- Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
20
|
Jiao Y, Dibble TS. First kinetic study of the atmospherically important reactions BrHg˙ + NO 2 and BrHg˙ + HOO. Phys Chem Chem Phys 2018; 19:1826-1838. [PMID: 28000816 DOI: 10.1039/c6cp06276h] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use computational chemistry to determine the rate constants and product yields for the reactions of BrHg˙ with the atmospherically abundant radicals NO2 and HOO. The reactants, products, and well-defined transition states are characterized using CCSD(T) with large basis sets. The potential energy profiles for the barrierless addition of HOO and NO2 to BrHg˙ are characterized using CASPT2 and RHF-CCSDT, and the rate constants are computed as a function of temperature and pressure using variational transition state theory and master equation simulations. The calculated rate constant for the addition of NO2 to BrHg˙ is larger than that for the addition of HOO by a factor of up to two under atmospheric conditions. For the reaction of HOO with BrHg˙ the addition reaction entirely dominates competing HOO + BrHg˙ reaction channels. The addition of NO2 to BrHg˙ initially produces both BrHgNO2 and BrHgONO, but after a few seconds under atmospheric conditions the sole product is syn-BrHgONO. A previously unsuspected reaction channel for BrHg˙ + NO2 competes with the addition to yield Hg + BrNO2. This reaction reduces the mercury oxidation state in BrHg˙ from Hg(i) to Hg(0) and slows the atmospheric oxidation of Hg(0). While the rate constant for this reduction channel is not well-constrained by the present calculations, it may be as much as 18% as large as the oxidation channel under some atmospheric conditions. As no experimental kinetic or product yield data are available for the reactions studied here, this work will provide guidance for atmospheric modelers and experimental kineticists.
Collapse
Affiliation(s)
- Yuge Jiao
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr, Syracuse, NY 13210, USA.
| | - Theodore S Dibble
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr, Syracuse, NY 13210, USA.
| |
Collapse
|
21
|
Jones PJ, Riser B, Zhang J. Flash Pyrolysis of t-Butyl Hydroperoxide and Di-t-butyl Peroxide: Evidence of Roaming in the Decomposition of Organic Hydroperoxides. J Phys Chem A 2017; 121:7846-7853. [PMID: 28956925 DOI: 10.1021/acs.jpca.7b07359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermal decomposition of t-butyl hydroperoxide and di-t-butyl peroxide was investigated using flash pyrolysis (in a short reaction time of <100 μs) and vacuum-ultraviolet (λ = 118.2 nm) single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) at temperatures up to 1120 K and quantum computational methods. Acetone and methyl radical were detected as the predominant products in the initial decomposition of di-t-butyl peroxide via O-O bond fission. In the initial dissociation of t-butyl hydroperoxide, acetone, methyl radical, isobutylene, and isobutylene oxide products were identified. The novel detection of the unimolecular formation of isobutylene oxide, as supported by the computational study, was found to proceed via a roaming hydroxyl radical facilitated by a hydrogen-bonded intermediate. This new pathway could provide a new class of reactions to consider in the modeling of the low temperature oxidation of alkanes.
Collapse
Affiliation(s)
- Paul J Jones
- Department of Chemistry and ‡Air Pollution Research Center, University of California , Riverside, California 92521, United States
| | - Blake Riser
- Department of Chemistry and ‡Air Pollution Research Center, University of California , Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry and ‡Air Pollution Research Center, University of California , Riverside, California 92521, United States
| |
Collapse
|
22
|
Vlasov PA, Kuznetsov NM, Petrov YP, Turetskii SV. Nitromethane Isomerization during Its Thermal Decay. KINETICS AND CATALYSIS 2017. [DOI: 10.1134/s0023158418010147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Houston PL, Wang X, Ghosh A, Bowman JM, Quinn MS, Kable SH. Formaldehyde roaming dynamics: Comparison of quasi-classical trajectory calculations and experiments. J Chem Phys 2017; 147:013936. [DOI: 10.1063/1.4982823] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Paul L. Houston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA and Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14852, USA
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Xiaohong Wang
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Aryya Ghosh
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Mitchell S. Quinn
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott H. Kable
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
24
|
Matsugi A, Shiina H. Thermal Decomposition of Nitromethane and Reaction between CH3 and NO2. J Phys Chem A 2017; 121:4218-4224. [DOI: 10.1021/acs.jpca.7b03715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akira Matsugi
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroumi Shiina
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
25
|
Roaming mediated nonadiabatic dynamics in molecular hydrogen elimination from propane at 157 nm. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Houston PL, Conte R, Bowman JM. Roaming Under the Microscope: Trajectory Study of Formaldehyde Dissociation. J Phys Chem A 2016; 120:5103-14. [DOI: 10.1021/acs.jpca.6b00488] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul L. Houston
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14852, United States
| | - Riccardo Conte
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
- Dipartimento
di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
27
|
Fernando R, Ariyasingha NM, Suits AG. Imaging NO elimination in the infrared multiphoton dissociation of nitroalkanes and alkyl nitrites. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Simmie JM. A Database of Formation Enthalpies of Nitrogen Species by Compound Methods (CBS-QB3, CBS-APNO, G3, G4). J Phys Chem A 2015; 119:10511-26. [PMID: 26421747 DOI: 10.1021/acs.jpca.5b06054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate thermochemical data for compounds containing C/H/N/O are required to underpin kinetics simulation and modeling of the reactions of these species in different environments. There is a dearth of experimental data so computational quantum chemistry has stepped in to fill this breach and to verify whether particular experiments are in need of revision. A number of composite model chemistries (CBS-QB3, CBS-APNO, G3, and G4) are used to compute theoretical atomization energies and hence enthalpies of formation at 0 and 298.15 K, and these are benchmarked against the best available compendium of values, the Active Thermochemical Tables or ATcT. In general the agreement is very good for some 28 species with the only discrepancy being for hydrazine. It is shown that, although individually the methods do not perform that well, collectively the mean unsigned error is <1.7 kJ mol(-1); hence, this approach provides a useful tool to screen published values and validate new experimental results. Using multiple model chemistries does have some drawbacks but can produce good results even for challenging molecules like HOON and CN2O2. The results for these smaller validated molecules are then used as anchors for determining the formation enthalpies of larger species such as methylated hydrazines and diazenes, five- and six-membered heterocyclics via carefully chosen isodesmic working reactions with the aim of resolving some discrepancies in the literature and establishing a properly validated database. This expanded database could be useful in testing the performance of computationally less-demanding density function methods with newer functionals that have the capacity to treat much larger systems than those tested here.
Collapse
Affiliation(s)
- John M Simmie
- Combustion Chemistry Centre & School of Chemistry, National University of Ireland , Galway H91 TK33, Ireland
| |
Collapse
|