1
|
Nam MG, Moon J, Kim M, Koo JK, Ho JW, Choi GH, Kim HJ, Shin CS, Kwon SJ, Kim YJ, Chang H, Kim Y, Yoo PJ. p-Phenylenediamine-Bridged Binder-Electrolyte-Unified Supramolecules for Versatile Lithium Secondary Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304803. [PMID: 37589475 DOI: 10.1002/adma.202304803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Indexed: 08/18/2023]
Abstract
The binder is an essential component in determining the structural integrity and ionic conductivity of Li-ion battery electrodes. However, conventional binders are not sufficiently conductive and durable to be used with solid-state electrolytes. In this study, a novel system is proposed for a Li secondary battery that combines the electrolyte and binder into a unified structure, which is achieved by employing para-phenylenediamine (pPD) moiety to create supramolecular bridges between the parent binders. Due to a partial crosslinking effect and charge-transferring structure of pPD, the proposed strategy improves both the ionic conductivity and mechanical properties by a factor of 6.4 (achieving a conductivity of 3.73 × 10-4 S cm-1 for poly(ethylene oxide)-pPD) and 4.4 (reaching a mechanical strength of 151.4 kPa for poly(acrylic acid)-pPD) compared to those of conventional parent binders. As a result, when the supramolecules of pPD are used as a binder in a pouch cell with a lean electrolyte loading of 2 µL mAh-1 , a capacity retention of 80.2% is achieved even after 300 cycles. Furthermore, when it is utilized as a solid-state electrolyte, an average Coulombic efficiency of 99.7% and capacity retention of 98.7% are attained under operations at 50 °C without external pressure or a pre-aging process.
Collapse
Affiliation(s)
- Myeong Gyun Nam
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Janghyeon Moon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Minjun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jin Kyo Koo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jeong-Won Ho
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gwan Hyun Choi
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hye Jin Kim
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Chang-Su Shin
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young-Jun Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hyuk Chang
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Youngugk Kim
- Samsung SDI Co., Ltd. R&D Center, Suwon, 16678, Republic of Korea
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Chen Y, Zhuo M, Wen X, Chen W, Zhang K, Li M. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206830. [PMID: 36707495 PMCID: PMC10104673 DOI: 10.1002/advs.202206830] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Indexed: 05/22/2023]
Abstract
Organic photothermal cocrystals, integrating the advantages of intrinsic organic cocrystals and the fascinating photothermal conversion ability, hold attracted considerable interest in both basic science and practical applications, involving photoacoustic imaging, seawater desalination, and photothermal therapy, and so on. However, these organic photothermal cocrystals currently suffer individual cases discovered step by step, as well as the deep and systemic investigation in the corresponding photothermal conversion mechanisms is rarely carried out, suggesting a huge challenge for their further developments. Therefore, it is urgently necessary to investigate and explore the rational design and synthesis of high-performance organic photothermal cocrystals for future applications. This review first and systematically summarizes the organic photothermal cocrystal in terms of molecular classification, the photothermal conversion mechanism, and their corresponding applications. The timely interpretation of the cocrystal photothermal effect will provide broad prospects for the purposeful fabrication of excellent organic photothermal cocrystals toward great efficiency, low cost, and multifunctionality.
Collapse
Affiliation(s)
- Ye‐Tao Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ming‐Peng Zhuo
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Xinyi Wen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ke‐Qin Zhang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ming‐De Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
- Chemistry and Chemical Engineering Guangdong LaboratoryShantou UniversityShantou515031China
| |
Collapse
|
3
|
Fotović L, Bedeković N, Stilinović V. Evaluation of Halogenopyridinium Cations as Halogen Bond Donors. CRYSTAL GROWTH & DESIGN 2021; 21:6889-6901. [PMID: 34880714 PMCID: PMC8641392 DOI: 10.1021/acs.cgd.1c00805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
We have performed a database survey and a structural and computational study of the potential and the limitations of halogenopyridinium cations as halogen bond donors. The database survey demonstrated that adding a positive charge on a halogenopyridine ring increases the probability that the halogen atom will participate in a halogen bond, although for chloropyridines it remains below 60%. Crystal structures of both protonated and N-methylated monohalogenated pyridinium cations revealed that the iodo- and bromopyridinium cations always form halogen-bonding contacts with the iodide anions shorter than the sum of the vdW radii, while chloropyridinium cations mostly participate in longer contacts or fail to form halogen bonds. Although a DFT study of the electrostatic potential has shown that both protonation and N-methylation of halogenopyridines leads to a considerable increase in the ESP of the halogen σ-hole, it is generally not the most positive site on the cation, allowing for alternate binding sites.
Collapse
Affiliation(s)
- Luka Fotović
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nikola Bedeković
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Vladimir Stilinović
- Department of Chemistry,
Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Abstract
We performed a structural study of N-alkylated halogenopyridinium cations to examine whether choice of the N-substituent has any considerable effect on the halogen bonding capability of the cations. For that purpose, we prepared a series of N-ethyl-3-halopyridinium iodides and compared them with their N-methyl-3-halopyridinium analogues. Structural analysis revealed that N-ethylated halogenopyridinium cations form slightly shorter C−X⋯I− halogen bonds with iodide anion. We have also attempted synthesis of ditopic symmetric bis-(3-iodopyridinium) dications. Although successful in only one case, the syntheses have afforded two novel ditopic asymmetric monocations with an iodine atom bonded to the pyridine ring and another on the aliphatic N-substituent. Here, the C−I⋯I− halogen bond lengths involving pyridine iodine atom were notably shorter than those involving an aliphatic iodine atom as a halogen bond donor. This trend in halogen bond lengths is in line with the charge distribution on the Hirshfeld surfaces of the cations—the positive charge is predominantly located in the pyridine ring making the pyridine iodine atom σ-hole more positive than the one on the alkyl chan.
Collapse
|
5
|
Andersen CL, Lacerda EG, Christensen JB, Sauer SPA, Hammerich O. Prediction of the standard potentials for one-electron oxidation of N, N, N', N' tetrasubstituted p-phenylenediamines by calculation. Phys Chem Chem Phys 2021; 23:20340-20351. [PMID: 34486635 DOI: 10.1039/d1cp02315b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The formal potentials for the reversible one-electron oxidation of N,N,N',N' tetrasubstituted p-phenylenediamines in acetonitrile have been applied as a test set for benchmarking computational methods for a series of compounds with only small structural differences. The aim of the study is to propose a simple method for calculating the standard oxidation potentials, and therefore, the protocol is progressively developed by adding more terms in the energy expression. In addition, the effect of including implicit solvation models (IEFPCM, CPCM, and SMD), larger basis sets, and correlation methods are investigated. The oxidation potentials calculated using the G3MP2B3 approach with IEFPCM resulted in the best fit (R2 = 0.9624), but the slope of the correlation line, 0.74, is far from the optimal value, 1.00. B3LYP/6-311++G(d,p) and TPSSh/6-311++G(2d,p) yielded only slightly less consistent data (R2 = 0.9388 and R2 = 0.9425), but with much better slopes, 1.00 and 0.94, respectively. We conclude that it is important to investigate the basis set size and treatment of electron correlation when calculating oxidation potentials for N,N,N',N' tetrasubstituted p-phenylenediamines.
Collapse
Affiliation(s)
- Cecilie L Andersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Evanildo G Lacerda
- Instituto de Física da Universidade de São Paulo, Rua do Matão 1371, 05508-090 São Paulo, SP, Brazil
| | - Jørn B Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | - Ole Hammerich
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
6
|
Frosch J, Koneczny M, Bannenberg T, Tamm M. Halogen Complexes of Anionic N-Heterocyclic Carbenes. Chemistry 2021; 27:4349-4363. [PMID: 33094865 PMCID: PMC7986712 DOI: 10.1002/chem.202004418] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The lithium complexes [(WCA-NHC)Li(toluene)] of anionic N-heterocyclic carbenes with a weakly coordinating anionic borate moiety (WCA-NHC) reacted with iodine, bromine, or CCl4 to afford the zwitterionic 2-halogenoimidazolium borates (WCA-NHC)X (X=I, Br, Cl; WCA=B(C6 F5 )3 , B{3,5-C6 H3 (CF3 )2 }3 ; NHC=IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, or NHC=IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). The iodine derivative (WCA-IDipp)I (WCA=B(C6 F5 )3 ) formed several complexes of the type (WCA-IDipp)I⋅L (L=C6 H5 Cl, C6 H5 Me, CH3 CN, THF, ONMe3 ), revealing its ability to act as an efficient halogen bond donor, which was also exploited for the preparation of hypervalent bis(carbene)iodine(I) complexes of the type [(WCA-IDipp)I(NHC)] and [PPh4 ][(WCA-IDipp)I(WCA-NHC)] (NHC=IDipp, IMes). The corresponding bromine complex [PPh4 ][(WCA-IDipp)2 Br] was isolated as a rare example of a hypervalent (10-Br-2) system. DFT calculations reveal that London dispersion contributes significantly to the stability of the bis(carbene)halogen(I) complexes, and the bonding was further analyzed by quantum theory of atoms in molecules (QTAIM) analysis.
Collapse
Affiliation(s)
- Jenni Frosch
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Marvin Koneczny
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Matthias Tamm
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
7
|
Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63582-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Sumii Y, Sasaki K, Tsuzuki S, Shibata N. Studies of Halogen Bonding Induced by Pentafluorosulfanyl Aryl Iodides: A Potential Group of Halogen Bond Donors in a Rational Drug Design. Molecules 2019; 24:molecules24193610. [PMID: 31591340 PMCID: PMC6803875 DOI: 10.3390/molecules24193610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022] Open
Abstract
The activation of halogen bonding by the substitution of the pentafluoro-λ6-sulfanyl (SF5) group was studied using a series of SF5-substituted iodobenzenes. The simulated electrostatic potential values of SF5-substituted iodobenzenes, the ab initio molecular orbital calculations of intermolecular interactions of SF5-substituted iodobenzenes with pyridine, and the 13C-NMR titration experiments of SF5-substituted iodobenzenes in the presence of pyridine or tetra (n-butyl) ammonium chloride (TBAC) indicated the obvious activation of halogen bonding, although this was highly dependent on the position of SF5-substitution on the benzene ring. It was found that 3,5-bis-SF5-iodobenzene was the most effective halogen bond donor, followed by o-SF5-substituted iodobenzene, while the m- and p-SF5 substitutions did not activate the halogen bonding of iodobenzenes. The similar ortho-effect was also confirmed by studies using a series of nitro (NO2)-substituted iodobenzenes. These observations are in good agreement with the corresponding Mulliken charge of iodine. The 2:1 halogen bonding complex of 3,5-bis-SF5-iodobenzene and 1,4-diazabicyclo[2.2.2]octane (DABCO) was also confirmed. Since SF5-containing compounds have emerged as promising novel pharmaceutical and agrochemical candidates, the 3,5-bis-SF5-iodobenzene unit may be an attractive fragment of rational drug design capable of halogen bonding with biomolecules.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Kenta Sasaki
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Seiji Tsuzuki
- Research Center for Computational Design of Advanced Functional Materials, AIST, Tsukuba, Ibaraki 305-8568, Japan.
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China.
| |
Collapse
|
9
|
Gunawardana CA, Aakeröy CB. Co-crystal synthesis: fact, fancy, and great expectations. Chem Commun (Camb) 2018; 54:14047-14060. [DOI: 10.1039/c8cc08135b] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Some strategies for driving co-crystal synthesis using a variety of competing non-covalent interactions are presented.
Collapse
Affiliation(s)
| | - C. B. Aakeröy
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| |
Collapse
|
10
|
Nwachukwu CI, Kehoe ZR, Bowling NP, Speetzen ED, Bosch E. Cooperative halogen bonding and polarized π-stacking in the formation of coloured charge-transfer co-crystals. NEW J CHEM 2018. [DOI: 10.1039/c8nj00693h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matched electron rich halogen bond acceptors and donor have been synthesized and the halogen bonded charge transfer cocrystals characterized.
Collapse
Affiliation(s)
| | - Zachary R. Kehoe
- Department of Chemistry
- University of Wisconsin-Stevens Point
- Stevens Point
- USA
| | - Nathan P. Bowling
- Department of Chemistry
- University of Wisconsin-Stevens Point
- Stevens Point
- USA
| | - Erin D. Speetzen
- Department of Chemistry
- University of Wisconsin-Stevens Point
- Stevens Point
- USA
| | - Eric Bosch
- Department of Chemistry
- Missouri State University
- Springfield
- USA
| |
Collapse
|
11
|
Theoretical study on the molecular structure, intermolecular interaction and spectral features of 2-aminopyridine/ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone complex. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1277-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Rosokha S. Electron-transfer reactions of halogenated electrophiles: a different look into the nature of halogen bonding. Faraday Discuss 2017; 203:315-332. [DOI: 10.1039/c7fd00074j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rates of oxidation of ferrocene derivatives by brominated molecules R-Br (CBr3CN, CBr4, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3F, and CBr3H) were consistent with the predictions of the outer-sphere dissociative electron-transfer theory. The similar redox-reactions of the R-Br electrophiles with the typical halogen-bond acceptors tetramethyl-p-phenylenediamine (TMPD) or iodide were much faster than calculated using the same model. The fast redox-processes in these systems were related to the involvement of the transient halogen-bonded [R-Br, TMPD] or [R-Br, I−] complexes in which barriers for electron transfer were lowered by the strong electronic coupling of reactants. The Mulliken–Hush treatment of the spectral and structural characteristics of the [R-Br, TMPD] or [R-Br, I−] complexes corroborated the values of coupling elements, Hab, of 0.2–0.5 eV implied by the kinetic data. The Natural Bond Orbital analysis of these complexes indicated a noticeable donor/acceptor charge transfer, Δq, of 0.03–0.09 ē. The Hab and Δq values in the [R-Br, TMPD] and [R-Br, I−] complexes (which are similar to those in the traditional charge-transfer associates) indicate significant contribution of charge-transfer (weakly-covalent) interaction to halogen bonding. The decrease of the barrier for electron transfer between the halogen-bonded reactants demonstrated in the current work points out that halogen bonding should be taken into account in the mechanistic analysis of the reactions of halogenated species.
Collapse
|
13
|
Li L, Wang H, Wang W, Jin WJ. Interactions between haloperfluorobenzenes and fluoranthene in luminescent cocrystals from π-hole⋯π to σ-hole⋯π bonds. CrystEngComm 2017. [DOI: 10.1039/c7ce00950j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From π-hole⋯π to σ-hole⋯π bonds between haloperfluorobenzenes and fluoranthene in luminescent cocrystals.
Collapse
Affiliation(s)
- Lili Li
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| | - Hui Wang
- College of Chemistry & Material Science
- Shanxi Normal University
- Linfen
- PR China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering
- Luoyang Normal University
- Luoyang 471022
- PR China
| | - Wei Jun Jin
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- PR China
| |
Collapse
|
14
|
Rosokha SV, Lukacs E, Ritzert JT, Wasilewski A. Mechanism and Thermodynamics of Reductive Cleavage of Carbon–Halogen Bonds in the Polybrominated Aliphatic Electrophiles. J Phys Chem A 2016; 120:1706-15. [DOI: 10.1021/acs.jpca.5b11410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sergiy V. Rosokha
- Department
of Biological,
Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Emoke Lukacs
- Department
of Biological,
Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Jeremy T. Ritzert
- Department
of Biological,
Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Adam Wasilewski
- Department
of Biological,
Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
15
|
Rosokha SV, Stern CL, Vinakos MK. From single-point to three-point halogen bonding between zinc(ii) tetrathiocyanate and tetrabromomethane. CrystEngComm 2016. [DOI: 10.1039/c5ce02125a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The strengths of three- and two-point halogen bonding in CBr4·[Zn(NCS)4]2−dyads are close to that of single-point CBr4·NCS−interaction.
Collapse
Affiliation(s)
- Sergiy V. Rosokha
- Department of Biological, Chemical and Physical Sciences
- Roosevelt University
- Chicago, USA
| | | | - Michael K. Vinakos
- Department of Biological, Chemical and Physical Sciences
- Roosevelt University
- Chicago, USA
| |
Collapse
|
16
|
Berger G, Robeyns K, Soubhye J, Wintjens R, Meyer F. Halogen bonding in a multi-connected 1,2,2-triiodo-alkene involving geminal and/or vicinal iodines: a crystallographic and DFT study. CrystEngComm 2016. [DOI: 10.1039/c5ce02230d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four halogen-bonded organizations of a 1,2,2-triiodo-alkene involving geminal and/or vicinal iodine atoms were studied both by X-ray diffraction and density functional theory (DFT).
Collapse
Affiliation(s)
- G. Berger
- Chimie Pharmaceutique Organique
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- 1050 Bruxelles, Belgium
- Department of Chemistry
| | - K. Robeyns
- Institute of Condensed Matter and Nanosciences (IMCN)
- Université Catholique de Louvain (UCL)
- 1348 Louvain-la-Neuve, Belgium
| | - J. Soubhye
- Chimie Pharmaceutique Organique
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- 1050 Bruxelles, Belgium
| | - R. Wintjens
- Laboratory of Biopolymers and Supramolecular Nanomaterials
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- 1050 Bruxelles, Belgium
| | - F. Meyer
- Laboratory of Biopolymers and Supramolecular Nanomaterials
- Faculty of Pharmacy
- Université Libre de Bruxelles (ULB)
- 1050 Bruxelles, Belgium
| |
Collapse
|
17
|
Wang Y, Guo X, Tang M, Wei D. Theoretical Investigations toward the Asymmetric Insertion Reaction of Diazoester with Aldehyde Catalyzed by N-Protonated Chiral Oxazaborolidine: Mechanisms and Stereoselectivity. J Phys Chem A 2015; 119:8422-31. [DOI: 10.1021/acs.jpca.5b04793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Wang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Xiaokang Guo
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Mingsheng Tang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Donghui Wei
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| |
Collapse
|