1
|
Noriega L, Gonzalez-Ortiz LA, Ortíz-Chi F, Ramírez SI, Merino G. In Quest of the Missing C 2H 6O 2 Isomers in the Interstellar Medium: A Theoretical Search. J Phys Chem A 2024; 128:6757-6762. [PMID: 39087830 PMCID: PMC11331521 DOI: 10.1021/acs.jpca.4c04102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Ethylene glycol (C2H6O2), the only diol detected in the interstellar medium (ISM), is a key component in the synthesis of prebiotic sugars. Its structural isomer, methoxymethanol, has also been found in the ISM. Our results show that neither ethylene glycol (ethane-1,2-diol) nor methoxymethanol is the most stable isomer. Using high-level computational methods, we identified five isomers: two diols, one hydroxy ether, and two peroxides. The geminal diol 1,1-ethanediol (ethane-1,1-diol) is the most stable isomer, although it has not been detected in the ISM, whereas the two peroxides are less stable than the geminal diol by 60 kcal/mol. This study also provides the rotational constants and dipole moment for each conformer of every C2H6O2 isomer.
Collapse
Affiliation(s)
- Lisset Noriega
- Departamento
de Física Aplicada, Centro de Investigación
y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso,
Apdo. Postal 73, Cordemex, 97310 Mérida, Yucatán, México
| | - Luis Armando Gonzalez-Ortiz
- Departamento
de Física Aplicada, Centro de Investigación
y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso,
Apdo. Postal 73, Cordemex, 97310 Mérida, Yucatán, México
| | - Filiberto Ortíz-Chi
- Conahcyt-Departamento
de Física Aplicada, Centro de Investigación
y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida 97310, Yucatán, México
| | - Sandra I. Ramírez
- Centro
de Investigaciones Químicas, Universidad
Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa, Cuernavaca, Morelos, C. P. 62209, México
| | - Gabriel Merino
- Departamento
de Física Aplicada, Centro de Investigación
y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso,
Apdo. Postal 73, Cordemex, 97310 Mérida, Yucatán, México
| |
Collapse
|
2
|
Nguyen TL, Peeters J, Müller JF, Perera A, Bross DH, Ruscic B, Stanton JF. Methanediol from cloud-processed formaldehyde is only a minor source of atmospheric formic acid. Proc Natl Acad Sci U S A 2023; 120:e2304650120. [PMID: 37988470 PMCID: PMC10691333 DOI: 10.1073/pnas.2304650120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/07/2023] [Indexed: 11/23/2023] Open
Abstract
Atmospheric formic acid is severely underpredicted by models. A recent study proposed that this discrepancy can be resolved by abundant formic acid production from the reaction (1) between hydroxyl radical and methanediol derived from in-cloud formaldehyde processing and provided a chamber-experiment-derived rate constant, k1 = 7.5 × 10-12 cm3 s-1. High-level accuracy coupled cluster calculations in combination with E,J-resolved two-dimensional master equation analyses yield k1 = (2.4 ± 0.5) × 10-12 cm3 s-1 for relevant atmospheric conditions (T = 260-310 K and P = 0-1 atm). We attribute this significant discrepancy to HCOOH formation from other molecules in the chamber experiments. More importantly, we show that reversible aqueous processes result indirectly in the equilibration on a 10 min. time scale of the gas-phase reaction [Formula: see text] (2) with a HOCH2OH to HCHO ratio of only ca. 2%. Although HOCH2OH outgassing upon cloud evaporation typically increases this ratio by a factor of 1.5-5, as determined by numerical simulations, its in-cloud reprocessing is shown using a global model to strongly limit the gas-phase sink and the resulting production of formic acid. Based on the combined findings in this work, we derive a range of 1.2-8.5 Tg/y for the global HCOOH production from cloud-derived HOCH2OH reacting with OH. The best estimate, 3.3 Tg/y, is about 30 times less than recently reported. The theoretical equilibrium constant Keq (2) determined in this work also allows us to estimate the Henry's law constant of methanediol (8.1 × 105 M atm-1 at 280 K).
Collapse
Affiliation(s)
- Thanh Lam Nguyen
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL32611
- Quantum Theory Project, Department of Physics, University of Florida, Gainesville, FL32611
| | - Jozef Peeters
- Department of Chemistry, University of Leuven, LeuvenB-3001, Belgium
| | - Jean-François Müller
- Department of Atmospheric Composition, Royal Belgian Institute for Space Aeronomy, BrusselsB-1180, Belgium
| | - Ajith Perera
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL32611
- Quantum Theory Project, Department of Physics, University of Florida, Gainesville, FL32611
| | - David H. Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - John F. Stanton
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL32611
- Quantum Theory Project, Department of Physics, University of Florida, Gainesville, FL32611
| |
Collapse
|
3
|
Bai FY, Liu ZY, Ni S, Yang YS, Yu Z, Wang GH, Zhao Z, Pan XM. Metal-free catalysis for the reaction of nitrogen dioxide dimer with phenol: An unexpected favorable source of nitrate and aerosol precursors in vehicle exhaust. CHEMOSPHERE 2022; 291:132705. [PMID: 34710448 DOI: 10.1016/j.chemosphere.2021.132705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/18/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric reaction mechanism and dynamics of phenol with nitrogen dioxide dimer were explored by the density functional theory and high-level quantum chemistry combined with statistical kinetic calculations within 220-800 K. The nitric acid and phenyl nitrite, the typical aerosol precursors, are the preponderant products because of the low formation free energy barrier (∼8.7 kcal/mol) and fast rate constants (∼10-15 cm3 molecule-1 s-1 at 298 K). Phenyl nitrate is the minor product and it would be also formed from the transformation of phenyl nitrite in NO2-rich environment. More importantly, kinetic effects and catalytic mechanism of a series of metal-free catalysts (H2O, NH3, CH3NH2, CH3NHCH3, HCOOH, and CH3COOH) on the title reaction were investigated at the same level. The results indicate that CH3NH2 and CH3NHCH3 can not only catalyze the title reaction by lowering the free energy barrier (about 1.4-6.5 kcal/mol) but also facilitate the production of organic ammonium nitrate via acting as a donor-acceptor of hydrogen. Conversely, the other species are non-catalytic upon the title reaction. The stabilization energies and donor-acceptor interactions in alkali-catalyzed product complexes were explored, which can provide new insights to the properties of aerosol precursors. Moreover, the lifetime of phenol determined by nitrogen dioxide dimer in the presence of dimethylamine may compete with that of determined by OH radicals, indicating that nitrogen dioxide dimer is responsible for the elimination of phenol in the polluted atmosphere. This work could help us thoroughly understand the removal of nitrogen oxides and phenol as well as new aerosol precursor aggregation in vehicle exhaust.
Collapse
Affiliation(s)
- Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Zi-Yu Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China; Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yong-Sheng Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Zhou Yu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Guang-Hui Wang
- Department of Automation, Innovation and Entrepreneurship Center, Shenyang Ligong University, Shenyang, 110159, People's Republic of China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing, 102249, People's Republic of China.
| | - Xiu-Mei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
4
|
Lakshmanan S, Lingappan N. Autoxidation of Formaldehyde with Oxygen-A Comparison of Reaction Channels. ACS OMEGA 2022; 7:6778-6786. [PMID: 35252672 PMCID: PMC8892663 DOI: 10.1021/acsomega.1c06375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The autoxidation of formaldehyde through initiation by triplet oxygen is studied via two initial steps: (1) H-atom abstraction and (2) 3O2 addition reaction. The reaction energy profiles show that the reactions are thermodynamically and kinetically demanding. A comparison of the pathways of these initial reactions and the search for a less energy-demanding pathway is presented. The presence of a Brønsted acid has no effect on the energetics of the reaction, while the presence of a single water molecule catalyst enhances the initial reactions. The H-atom abstraction reaction from formaldehyde results in formyl and hydroperoxy radicals. These radicals on further reaction with the second equivalent of 3O2 lead to a CO + 2HO2 product channel. The 3O2 addition reaction to formaldehyde results in a triplet biradical intermediate which further leads to performic acid, the precursor in the synthesis of carboxylic acids from aldehydes. In the presence of water molecules, performic acid is formed in a single kinetic step, and this leads to a CO2 + OH + HO2 product channel upon subsequent reaction with 3O2 in a thermodynamically favorable reaction. The results show that the less established 3O2 addition reaction to aldehydes is a viable route for autoxidation in the absence of purpose-built initiators, in addition to the well-established H-atom abstraction route.
Collapse
Affiliation(s)
- Sandhiya Lakshmanan
- CSIR—National
Institute of Science Communication and Policy Research, New Delhi 110012, India
| | | |
Collapse
|
5
|
Synthesis of methanediol [CH 2(OH) 2]: The simplest geminal diol. Proc Natl Acad Sci U S A 2022; 119:2111938119. [PMID: 34969838 PMCID: PMC8740743 DOI: 10.1073/pnas.2111938119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Methanediol [CH2(OH)2] represents a pivotal atmospheric volatile organic compound and plays a fundamental role in aerosol growth. Although sought for decades, methanediol has never been identified due to the inherent dehydration tendency of two adjacent hydroxyl groups (OH) at the same carbon atom. Here, we prepare and identify methanediol via processing of low-temperature ices followed by sublimation into the gas phase. These findings open up a concept to synthesize and characterize unstable geminal diols—critical organic transients in Earth’s atmosphere. The excited state dynamics of oxygen may also lead to methanediol in methanol-rich interstellar ices in cold molecular clouds, followed by sublimation in star-forming regions and prospective detection of these reactive intermediates in the gas phase by radiotelescopes. Geminal diols—organic molecules carrying two hydroxyl groups at the same carbon atom—have been recognized as key reactive intermediates by the physical (organic) chemistry and atmospheric science communities as fundamental transients in the aerosol cycle and in the atmospheric ozonolysis reaction sequence. Anticipating short lifetimes and their tendency to fragment to water plus the aldehyde or ketone, free geminal diols represent one of the most elusive classes of organic reactive intermediates. Here, we afford an exceptional glance into the preparation of the previously elusive methanediol [CH2(OH)2] transient—the simplest geminal diol—via energetic processing of low-temperature methanol–oxygen ices. Methanediol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies. Electronic structure calculations reveal that methanediol is formed via excited state dynamics through insertion of electronically excited atomic oxygen into a carbon–hydrogen bond of the methyl group of methanol followed by stabilization in the icy matrix. The first preparation and detection of methanediol demonstrates its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition to formaldehyde and water. These findings advance our perception of the fundamental chemistry and chemical bonding of geminal diols and signify their role as an efficient sink of aldehydes and ketones in atmospheric environments eventually coupling the atmospheric chemistry of geminal diols and Criegee intermediates.
Collapse
|
6
|
Lu H, Tang Y, Zhou H, Lin W. Synthesis and Study of Performance for An Enhanced Formaldehyde Fluorescent Probe. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Arathala P, Tangtartharakul CB, Sinha A. Atmospheric Ring-Closure and Dehydration Reactions of 1,4-Hydroxycarbonyls in the Gas Phase: The Impact of Catalysts. J Phys Chem A 2021; 125:5963-5975. [PMID: 34191509 DOI: 10.1021/acs.jpca.1c02331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,4-Hydroxycarbonyls can potentially undergo sequential reactions involving cyclization followed by dehydration to form dihydrofurans. As dihydrofurans contain a double bond, they are highly reactive toward atmospheric oxidants such as OH, O3, and NO3. In the present study, we use ab initio calculations to examine the impact of various atmospheric catalysts on the energetics and kinetics of the gas-phase cyclization and dehydration reaction steps associated with 4-hydroxybutanal, a prototypical 1,4-hydroxycarbonyl molecule. The cyclization step transforms 4-hydroxybutanal into 2-hydroxytetrahydrofuran, which can subsequently undergo dehydration to form 2,3-dihydrofuran. As the barriers associated with the cyclization and dehydration steps for 4-hydroxybutanal are, respectively, 34.8 and 63.0 kcal/mol in the absence of a catalyst, both reaction steps are inaccessible under atmospheric conditions in the gas phase. However, the presence of a suitable catalyst can significantly reduce the reaction barriers, and we have examined the impact of a single molecule of H2O, HO2 radical, HC(O)OH, HNO3, and H2SO4 on these reactions. We find that H2SO4 reduces the reaction barriers the greatest, with the barrier for the cyclization step being reduced to -13.1 kcal/mol and that for the dehydration step going down to 9.2 kcal/mol, measured relative to their respective separated starting reactants. Interestingly, our kinetic study shows that HNO3 gives the fastest rate due to the combined effects of a larger atmospheric concentration and a reduced barrier. Thus, our study suggests that, with acid catalysis, the cyclization reaction step can readily occur for 1,4-hydroxycarbonyls in the gas phase. Because the dehydration step exhibits a significant barrier even with acid catalysis, the 2-hydroxytetrahydrofuran products, once formed, are likely lost through their reaction with OH radicals in the atmosphere. We have investigated the reaction pathways and the rate constant for this bimolecular reaction in the presence of excess molecular oxygen (3O2), as it would occur under tropospheric conditions, using computational chemistry over the 200-300 K temperature range. We find that the main products from these OH-initiated oxidation reactions are succinaldehyde + HO2 and 2,3-dihydro-2-furanol + HO2.
Collapse
Affiliation(s)
- Parandaman Arathala
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - Chanin B Tangtartharakul
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - Amitabha Sinha
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Parandaman A, Kumar M, Francisco JS, Sinha A. Organic Acid Formation from the Atmospheric Oxidation of Gem Diols: Reaction Mechanism, Energetics, and Rates. J Phys Chem A 2018; 122:6266-6276. [DOI: 10.1021/acs.jpca.8b01773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arathala Parandaman
- Department of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093, United States
| | - Manoj Kumar
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Amitabha Sinha
- Department of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
De Haan DO, Jimenez NG, de Loera A, Cazaunau M, Gratien A, Pangui E, Doussin JF. Methylglyoxal Uptake Coefficients on Aqueous Aerosol Surfaces. J Phys Chem A 2018; 122:4854-4860. [DOI: 10.1021/acs.jpca.8b00533] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David O. De Haan
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego California 92110 United States
| | - Natalie G. Jimenez
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego California 92110 United States
| | - Alexia de Loera
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego California 92110 United States
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université Paris Diderot (UPD), Créteil, France
| | - Aline Gratien
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université Paris Diderot (UPD), Créteil, France
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université Paris Diderot (UPD), Créteil, France
| | - Jean-François Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université Paris Diderot (UPD), Créteil, France
| |
Collapse
|
10
|
Effect of ammonia-water complex on decomposition of carbonic acid in troposphere: A quantum chemical investigation. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Mallick S, Sarkar S, Bandyopadhyay B, Kumar P. Effect of Ammonia and Formic Acid on the OH• + HCl Reaction in the Troposphere: Competition between Single and Double Hydrogen Atom Transfer Pathways. J Phys Chem A 2017; 122:350-363. [DOI: 10.1021/acs.jpca.7b09889] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Pradeep Kumar
- Department of Chemistry, MNIT Jaipur, Jaipur 302017, India
| |
Collapse
|
12
|
Chen L, Huang Y, Xue Y, Cao J, Wang W. Competition between HO2 and H2O2 Reactions with CH2OO/anti-CH3CHOO in the Oligomer Formation: A Theoretical Perspective. J Phys Chem A 2017; 121:6981-6991. [DOI: 10.1021/acs.jpca.7b05951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Long Chen
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
- State
Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
- State
Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
| | - Yonggang Xue
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
- State
Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
- State
Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi 710061, China
| | - Wenliang Wang
- School
of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular
Science of Shaanxi Province, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| |
Collapse
|
13
|
Rapf RJ, Perkins RJ, Carpenter BK, Vaida V. Mechanistic Description of Photochemical Oligomer Formation from Aqueous Pyruvic Acid. J Phys Chem A 2017; 121:4272-4282. [DOI: 10.1021/acs.jpca.7b03310] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rebecca J. Rapf
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Russell J. Perkins
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Barry K. Carpenter
- School
of Chemistry and the Physical Organic Chemistry Centre, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Veronica Vaida
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Kumar M, Anglada JM, Francisco JS. Role of Proton Tunneling and Metal-Free Organocatalysis in the Decomposition of Methanediol: A Theoretical Study. J Phys Chem A 2017; 121:4318-4325. [DOI: 10.1021/acs.jpca.7b01864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manoj Kumar
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Josep M. Anglada
- Departament
de Química Biològica i Modelització Molecular, Institute of Advanced Chemistry of Catalonia, c/Jordi Girona 18, E-08034 Barcelona, Spain
| | - Joseph S. Francisco
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
15
|
Toumi I, Yazidi O, Jaidane NE, Al Mogren MM, Francisco JS, Hochlaf M. Stereoisomers of hydroxymethanes: Probing structural and spectroscopic features upon substitution. J Chem Phys 2016; 145:244305. [PMID: 28049302 DOI: 10.1063/1.4972415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ab initio studies on CHx(OH)4-x (x = 0-3) polyols are carried out to derive their structural and spectroscopic features. Several stereoisomers (both equilibrium structures and transition states) are found. Some are predicted here for the first time. We determined hence their geometrical parameters, vibrational frequencies, electronic excitation energies for the singlet manifold, and IR spectra. While the IR spectra for all polyols present similar shapes, their UV spectra exhibit however distinct band origin that are specific to each polyol and more interestingly to each diasteroisomer. Stereoelectronic effects are also noticed and discussed. It is suggested that UV spectroscopy is an efficient probe to experimentally identify polyols in mixtures involving polyols.
Collapse
Affiliation(s)
- I Toumi
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - O Yazidi
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - N-E Jaidane
- Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El Manar, Tunis, Tunisia
| | - M Mogren Al Mogren
- Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - J S Francisco
- Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707, USA
| | - M Hochlaf
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, 5 Blvd. Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
16
|
Inaba S, Sameera WMC. Dehydration of Methanediol in Aqueous Solution: An ONIOM(QM/MM) Study. J Phys Chem A 2016; 120:6670-6. [DOI: 10.1021/acs.jpca.6b06575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Satoshi Inaba
- School
of International Liberal Studies, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
| | - W. M. C. Sameera
- Department
of Chemistry, Faculty of Science, Hokkaido University, North-10
West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
17
|
Kumar M, Sinha A, Francisco JS. Role of Double Hydrogen Atom Transfer Reactions in Atmospheric Chemistry. Acc Chem Res 2016; 49:877-83. [PMID: 27074637 DOI: 10.1021/acs.accounts.6b00040] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogen atom transfer (HAT) reactions are ubiquitous and play a crucial role in chemistries occurring in the atmosphere, biology, and industry. In the atmosphere, the most common and traditional HAT reaction is that associated with the OH radical abstracting a hydrogen atom from the plethora of organic molecules in the troposphere via R-H + OH → R + H2O. This reaction motif involves a single hydrogen transfer. More recently, in the literature, there is an emerging framework for a new class of HAT reactions that involves double hydrogen transfers. These reactions are broadly classified into four categories: (i) addition, (ii) elimination, (iii) substitution, and (iv) rearrangement. Hydration and dehydration are classic examples of addition and elimination reactions, respectively whereas tautomerization or isomerization belongs to a class of rearrangement reactions. Atmospheric acids and water typically mediate these reactions. Organic and inorganic acids are present in appreciable levels in the atmosphere and are capable of facilitating two-point hydrogen bonding interactions with oxygenates possessing an hydroxyl and/or carbonyl-type functionality. As a result, acids influence the reactivity of oxygenates and, thus, the energetics and kinetics of their HAT-based chemistries. The steric and electronic effects of acids play an important role in determining the efficacy of acid catalysis. Acids that reduce the steric strain of 1:1 substrate···acid complex are generally better catalysts. Among a family of monocarboxylic acids, the electronic effects become important; barrier to the catalyzed reaction correlates strongly with the pKa of the acid. Under acid catalysis, the hydration of carbonyl compounds leads to the barrierless formation of diols, which can serve as seed particles for atmospheric aerosol growth. The hydration of sulfur trioxide, which is the principle mechanism for atmospheric sulfuric acid formation, also becomes barrierless under acid catalysis. Rate calculations suggest that such acid catalysis play a key role in the formation of sulfuric acid in the Earth's stratosphere, Venusian atmosphere, and on heterogeneous surfaces. Over the past few years, theoretical calculations have shown that these acid-mediated double hydrogen atom transfers are important in the chemistry of Earth's atmosphere as well as that of other planets. This Account reviews and puts into perspective some of these atmospheric HAT reactions and their environmental significance.
Collapse
Affiliation(s)
- Manoj Kumar
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Amitabha Sinha
- Department
of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093-0314, United States
| | - Joseph S. Francisco
- Department
of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
18
|
Kumar M, Francisco JS. Red-Light Initiated Decomposition of α-Hydroxy Methylperoxy Radical in the Presence of Organic and Inorganic Acids: Implications for the HOx Formation in the Lower Stratosphere. J Phys Chem A 2016; 120:2677-83. [DOI: 10.1021/acs.jpca.6b01515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Nebraska—Lincoln, 639 North 12th Street, Lincoln, Nebraska 68588, United States
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska—Lincoln, 639 North 12th Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
19
|
Bandyopadhyay B, Biswas P, Kumar P. Ammonia as an efficient catalyst for decomposition of carbonic acid: a quantum chemical investigation. Phys Chem Chem Phys 2016; 18:15995-6004. [DOI: 10.1039/c6cp02407f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic structure calculations using M06-2X, MP2 and CCSD(T) methods have been employed to show ammonia as an efficient catalyst for decomposition of carbonic acid.
Collapse
Affiliation(s)
- Biman Bandyopadhyay
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur – 302017
- India
| | - Partha Biswas
- Department of Chemistry
- Scottish Church College
- Kolkata-700006
- India
| | - Pradeep Kumar
- Department of Chemistry
- Malaviya National Institute of Technology Jaipur
- Jaipur – 302017
- India
| |
Collapse
|
20
|
Kumar M, Francisco JS. Red‐Light‐Induced Decomposition of an Organic Peroxy Radical: A New Source of the HO
2
Radical. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Nebraska‐Lincoln, Lincoln, NE 68588 (USA)
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska‐Lincoln, Lincoln, NE 68588 (USA)
| |
Collapse
|
21
|
Kumar M, Francisco JS. Red‐Light‐Induced Decomposition of an Organic Peroxy Radical: A New Source of the HO
2
Radical. Angew Chem Int Ed Engl 2015; 54:15711-4. [DOI: 10.1002/anie.201509311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Nebraska‐Lincoln, Lincoln, NE 68588 (USA)
| | - Joseph S. Francisco
- Department of Chemistry, University of Nebraska‐Lincoln, Lincoln, NE 68588 (USA)
| |
Collapse
|