1
|
Johnson NA, Xue Y, Panzner MJ, Youngs WJ, Tessier CA. Investigation of Phosphazene Superbase Interactions with [PCl 2N] 3. Inorg Chem 2024; 63:20281-20285. [PMID: 39418475 DOI: 10.1021/acs.inorgchem.4c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this study, the reaction between phosphazene superbases and a chlorophosphazene trimer ([PCl2N]3) has been investigated. In this room temperature reaction, the phosphazene superbase (Me2N)3PN(Me2N)2P═NEt, commonly known as P2Et, was shown to behave as a nucleophile, displacing one of the chlorides from [PCl2N]3 and producing the tadpole-like structure 1. The reaction described herein is one of the few instances of a phosphazene superbase behaving as a nucleophile rather than a Brønsted base. Once formed, this structure contains contrasting reactivity, containing a weakly basic phosphazene head while maintaining a highly basic phosphazene tail of the tadpole. The mechanism of the reaction was explored by investigating the potential energy surface through density functional theory calculations at the B3LYP/6-311+G(d,p) level of quantum mechanical theory. It was determined that the reaction of P2Et with [PCl2N]3 followed a stepwise process beginning with the substitution of P2Et onto [PCl2N]3 with the concurrent loss of chloride. Subsequently, the chloride attacks the ethyl group of the P2Et moiety, and ethyl chloride is released, producing 1. Compound 1 was further characterized via 31P NMR spectroscopy, mass spectrometry, and X-ray crystallography.
Collapse
Affiliation(s)
- Nicholas A Johnson
- Department of Chemistry, Ashland University, Ashland, Ohio 44805, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Yuan Xue
- Department of Chemistry and Biochemistry, Oberlin College and Conservatory, Oberlin, Ohio 44074, United States
- Department of Chemistry and Biochemistry, The University of Mississippi, Oxford, Mississippi 38677, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew J Panzner
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Wiley J Youngs
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Claire A Tessier
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
2
|
Kulsha AV, Ivashkevich OA, Lyakhov DA, Michels D. Strong Bases Design: Key Techniques and Stability Issues. Int J Mol Sci 2024; 25:8716. [PMID: 39201404 PMCID: PMC11354936 DOI: 10.3390/ijms25168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Theoretical design of molecular superbases has been attracting researchers for more than twenty years. General approaches were developed to make the bases potentially stronger, but less attention was paid to the stability of the predicted structures. Hence, only a small fraction of the theoretical research has led to positive experimental results. Possible stability issues of extremely strong bases are extensively studied in this work using quantum chemical calculations on a high level of theory. Several step-by-step design examples are discussed in detail, and general recommendations are given to avoid the most common stability problems. New potentially stable structures are theoretically studied to demonstrate the future prospects of molecular superbases design.
Collapse
Affiliation(s)
- Andrey V. Kulsha
- Chemical Department, Belarusian State University, 14 Leningradskaya Str., 220006 Minsk, Belarus;
| | - Oleg A. Ivashkevich
- Research Institute for Physical Chemical Problems, Belarusian State University, 14 Leningradskaya Str., 220006 Minsk, Belarus
| | - Dmitry A. Lyakhov
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.M.)
| | - Dominik Michels
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; (D.A.L.); (D.M.)
| |
Collapse
|
3
|
Raczyńska ED, Gal JF, Maria PC. Strong Bases and beyond: The Prominent Contribution of Neutral Push-Pull Organic Molecules towards Superbases in the Gas Phase. Int J Mol Sci 2024; 25:5591. [PMID: 38891779 PMCID: PMC11172071 DOI: 10.3390/ijms25115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
In this review, the principles of gas-phase proton basicity measurements and theoretical calculations are recalled as a reminder of how the basicity PA/GB scale, based on Brønsted-Lowry theory, was constructed in the gas-phase (PA-proton affinity and/or GB-gas-phase basicity in the enthalpy and Gibbs energy scale, respectively). The origins of exceptionally strong gas-phase basicity of some organic nitrogen bases containing N-sp3 (amines), N-sp2 (imines, amidines, guanidines, polyguanides, phosphazenes), and N-sp (nitriles) are rationalized. In particular, the role of push-pull nitrogen bases in the development of the gas-phase basicity in the superbasicity region is emphasized. Some reasons for the difficulties in measurements for poly-functional nitrogen bases are highlighted. Various structural phenomena being in relation with gas-phase acid-base equilibria that should be considered in quantum-chemical calculations of PA/GB parameters are discussed. The preparation methods for strong organic push-pull bases containing a N-sp2 site of protonation are briefly reviewed. Finally, recent trends in research on neutral organic superbases, leaning toward catalytic and other remarkable applications, are underlined.
Collapse
Affiliation(s)
- Ewa Daniela Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Jean-François Gal
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France;
| | - Pierre-Charles Maria
- Institut de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France;
| |
Collapse
|
4
|
Lops C, Pengo P, Pasquato L. Highly Efficient Darzens Reactions Mediated by Phosphazene Bases under Mild Conditions. ChemistryOpen 2022; 11:e202200179. [PMID: 36207800 PMCID: PMC9547082 DOI: 10.1002/open.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
The highly basic and poorly nucleophilic phosphazene base P1 -t-Bu promotes the Darzens condensation of α-halo esters with aromatic aldehydes affording α,β-epoxy esters in nearly quantitative yields under mild conditions and in short reaction times. The more basic P4 -t-Bu phosphazene was found useful with low reactivity aldehydes. These reactions can be performed in aprotic organic solvents of low polarity, thus minimizing the hydrolysis of α,β-epoxy esters which often accompanies the base-promoted Darzens condensations.
Collapse
Affiliation(s)
- Carmine Lops
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
- Aptuit – an Evotec CompanyVia A. Fleming 437135VeronaItaly
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| |
Collapse
|
5
|
Deljuie F, Rouhani M, Saeidian H. Exceptional design of super/hyperbases based on spiro‐alleneic structures in gas phase: A DFT study. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fatemeh Deljuie
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Morteza Rouhani
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Hamid Saeidian
- Department of Science Payame Noor University (PNU) Tehran Iran
| |
Collapse
|
6
|
Kulsha AV, Ragoyja EG, Ivashkevich OA. Strong Bases Design: Predicted Limits of Basicity. J Phys Chem A 2022; 126:3642-3652. [PMID: 35657384 DOI: 10.1021/acs.jpca.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brønsted superbases have wide applications in organic chemistry due to their ability to activate C-H bonds. The strongest neutral bases to date are substituted aminophosphazenes developed in the late 1980s by Reinhard Schwesinger. Since then, much effort has been expended to create even stronger neutral bases. In this article, the reasons for the instability of very basic compounds are investigated by means of high-level quantum-chemical calculations. Theoretical basicity limits are suggested for solutions as well as for the gas phase. A record-breaking superbase most likely to be synthesizable and stable at ambient conditions is proposed. Hexamethylphosphoramide is considered a reliable ionizing solvent for superbases.
Collapse
Affiliation(s)
- Andrey V Kulsha
- Chemical Department, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Republic of Belarus
| | - Ekaterina G Ragoyja
- Chemical Department, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Republic of Belarus
| | - Oleg A Ivashkevich
- Laboratory for Chemistry of Condensed Systems, Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, 220006 Minsk, Republic of Belarus
| |
Collapse
|
7
|
Mikshiev VY, Tolstoy P, Tupikina EY, Puzyk AM, Vovk MA. Acid catalysis through N-protonation in undistorted carboxamides: improvement of amide proton sponge acylating ability. NEW J CHEM 2022. [DOI: 10.1039/d2nj02975h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acid catalysis of weakly distorted or undistorted carboxamides in acyl-migration reactions proceeding through N-protonation is the process with low probability in contrast to O-protonation. This circumstance made the experimental study...
Collapse
|
8
|
Golpayegani F, Mirjafary Z, Aliabad JM, Saeidian H. Harnessing aromaticity to obtain new powerful organic superbases based on phosphaallene ylide scaffold: A density functional theory study. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Oss M, Tshepelevitsh S, Kruve A, Liigand P, Liigand J, Rebane R, Selberg S, Ets K, Herodes K, Leito I. Quantitative electrospray ionization efficiency scale: 10 years after. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9178. [PMID: 34355441 DOI: 10.1002/rcm.9178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE The first comprehensive quantitative scale of the efficiency of electrospray ionization (ESI) in the positive mode by monoprotonation, containing 62 compounds, was published in 2010. Several trends were found between the compound structure and ionization efficiency (IE) but, possibly because of the limited diversity of the compounds, some questions remained. This work undertakes to align the new data with the originally published IE scale and carry out statistical analysis of the resulting more extensive and diverse data set to derive more grounded relationships and offer a possibility of predicting logIE values. METHODS Recently, several new IE studies with numerous compounds have been conducted. In several of them, more detailed investigations of the influence of compound structure, solvent properties, or instrument settings have been conducted. IE data from these studies and results from this work were combined, and the multilinear regression method was applied to relate IE to various compound parameters. RESULTS The most comprehensive IE scale available, containing 334 compounds of highly diverse chemical nature and spanning 6 orders of magnitude of IE, has been compiled. Several useful trends were revealed. CONCLUSIONS The ESI ionization efficiency of a compound by protonation is mainly affected by three factors: basicity (expressed by pKaH in water), molecular size (expressed by molar volume or surface area), and hydrophobicity of the ion (expressed by charge delocalization in the ion or its partition coefficient between a water-acetonitrile mixture and hexane). The presented models can be used for tentative prediction of logIE of new compounds (under the used conditions) from parameters that can be computed using commercially available software. The root mean square error of prediction is in the range of 0.7-0.8 log units.
Collapse
Affiliation(s)
- Merit Oss
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Anneli Kruve
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Piia Liigand
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jaanus Liigand
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Riin Rebane
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Sigrid Selberg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Kristel Ets
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Koit Herodes
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Vazdar K, Margetić D, Kovačević B, Sundermeyer J, Leito I, Jahn U. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality. Acc Chem Res 2021; 54:3108-3123. [PMID: 34308625 DOI: 10.1021/acs.accounts.1c00297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ConspectusOne of the constant challenges of synthetic chemistry is the molecular design and synthesis of nonionic, metal-free superbases as chemically stable neutral organic compounds of moderate molecular weight, intrinsically high thermodynamic basicity, adaptable kinetic basicity, and weak or tunable nucleophilicity at their nitrogen, phosphorus, or carbon basicity centers. Such superbases can catalyze numerous reactions, ranging from C-C bond formation to cycloadditions and polymerization, to name just a few. Additional benefits of organic superbases, as opposed to their inorganic counterparts, are their solubility in organic reaction media, mild reaction conditions, and higher selectivity. Approaching such superbasic compounds remains a continuous challenge. However, recent advances in synthetic methodology and theoretical understanding have resulted in new design principles and synthetic strategies toward superbases. Our computational contributions have demonstrated that the gas-phase basicity region of 350 kcal mol-1 and even beyond is easily reachable by organosuperbases. However, despite record-high basicities, the physical limitations of many of these compounds become quickly evident. The typically large molecular weight of these molecules and their sensitivity to ordinary reaction conditions prevent them from being practical, even though their preparation is often not too difficult. Thus, obviously structural limitations with respect to molecular weight and structural complexity must be imposed on the design of new synthetically useful organic superbases, but strategies for increasing their basicity remain important.The contemporary design of novel organic superbases is illustrated by phosphazenyl phosphanes displaying gas-phase basicities (GB) above 300 kcal mol-1 but having molecular weights well below 1000 g·mol-1. This approach is based on a reconsideration of phosphorus(III) compounds, which goes along with increasing their stability in solution. Another example is the preparation of carbodiphosphoranes incorporating pyrrolidine, tetramethylguanidine, or hexamethylphosphazene as a substituent. With gas-phase proton affinities of up to 300 kcal mol-1, they are among the top nonionic carbon bases on the basicity scale. Remarkably, the high basicity of these compounds is achieved at molecular weights of around 600 g·mol-1. Another approach to achieving high basicity through the cooperative effect of multiple intramolecular hydrogen bonding, which increases the stabilization of conjugate acids, has recently been confirmed.This Account focuses on our efforts to produce superbasic molecules that embody many desirable traits, but other groups' approaches will also be discussed. We reveal the crucial structural features of superbases and place them on known basicity scales. We discuss the emerging potential and current limits of their application and give a general outlook into the future.
Collapse
Affiliation(s)
- Katarina Vazdar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, v.v.i. Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | | | | | - Jörg Sundermeyer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, v.v.i. Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
11
|
Weitkamp RF, Neumann B, Stammler H, Hoge B. Phosphorus-Containing Superbases: Recent Progress in the Chemistry of Electron-Abundant Phosphines and Phosphazenes. Chemistry 2021; 27:10807-10825. [PMID: 34032319 PMCID: PMC8362139 DOI: 10.1002/chem.202101065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/11/2023]
Abstract
The renaissance of Brønsted superbases is primarily based on their pronounced capacity for a large variety of chemical transformations under mild reaction conditions. Four major set screws are available for the selective tuning of the basicity: the nature of the basic center (N, P, …), the degree of electron donation by substituents to the central atom, the possibility of charge delocalization, and the energy gain by hydrogen bonding. Within the past decades, a plethora of neutral electron-rich phosphine and phosphazene bases have appeared in the literature. Their outstanding properties and advantages over inorganic or charged bases have now made them indispensable as auxiliary bases in deprotonation processes. Herein, an update of the chemistry of basic phosphines and phosphazenes is given. In addition, due to widespread interest, their use in catalysis or as ligands in coordination chemistry is highlighted.
Collapse
Affiliation(s)
- Robin F. Weitkamp
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Berthold Hoge
- Centrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
12
|
Mondal P, Ishigami I, Gérard EF, Lim C, Yeh SR, de Visser SP, Wijeratne GB. Proton-coupled electron transfer reactivities of electronically divergent heme superoxide intermediates: a kinetic, thermodynamic, and theoretical study. Chem Sci 2021; 12:8872-8883. [PMID: 34257888 PMCID: PMC8246096 DOI: 10.1039/d1sc01952j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Heme superoxides are one of the most versatile metallo-intermediates in biology, and they mediate a vast variety of oxidation and oxygenation reactions involving O2(g). Overall proton-coupled electron transfer (PCET) processes they facilitate may proceed via several different mechanistic pathways, attributes of which are not yet fully understood. Herein we present a detailed investigation into concerted PCET events of a series of geometrically similar, but electronically disparate synthetic heme superoxide mimics, where unprecedented, PCET feasibility-determining electronic effects of the heme center have been identified. These electronic factors firmly modulate both thermodynamic and kinetic parameters that are central to PCET, as supported by our experimental and theoretical observations. Consistently, the most electron-deficient superoxide adduct shows the strongest driving force for PCET, whereas the most electron-rich system remains unreactive. The pivotal role of these findings in understanding significant heme systems in biology, as well as in alternative energy applications is also discussed.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| | - Izumi Ishigami
- Department of Physiology and Biophysics, Albert Einstein College of Medicine The Bronx New York 10461 USA
| | - Emilie F Gérard
- Manchester Institute of Biotechnology, Department of Chemical Engineering and Analytical Science, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Chaeeun Lim
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine The Bronx New York 10461 USA
| | - Sam P de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering and Analytical Science, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Gayan B Wijeratne
- Department of Chemistry, University of Alabama at Birmingham Birmingham AL 35205 USA
| |
Collapse
|
13
|
Schlenker K, Christensen EG, Zhanserkeev AA, McDonald GR, Yang EL, Lutz KT, Steele RP, VanderLinden RT, Saouma CT. Role of Ligand-Bound CO 2 in the Hydrogenation of CO 2 to Formate with a (PNP)Mn Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kevin Schlenker
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Elizabeth G. Christensen
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Asylbek A. Zhanserkeev
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Gabriel R. McDonald
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Emily L. Yang
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Kevin T. Lutz
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Ryan P. Steele
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Ryan T. VanderLinden
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Caroline T. Saouma
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Thompson BL, Heiden ZM. Tuning the reduction potentials of benzoquinone through the coordination to Lewis acids. Phys Chem Chem Phys 2021; 23:9822-9831. [PMID: 33908513 DOI: 10.1039/d1cp01266e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electron transfer promoted by the coordination of a substrate molecule to a Lewis acid or hydrogen bonding group is a critical step in many biological and catalytic transformations. This computational study investigates the nature of the interaction between benzoquinone and one and two Lewis acids by examining the influence of Lewis acid strength on the ability to alter the two reduction potentials of the coordinated benzoquinone molecule. To investigate this interaction, the coordination of the neutral (Q), singly reduced ([Q]˙-), and doubly reduced benzoquinone ([Q]2-) molecule to eight Lewis acids was analyzed. Coordination of benzoquinone to a Lewis acid became more favorable by 25 kcal mol-1 with each reduction of the benzoquinone fragment. Coordination of benzoquinone to a Lewis acid also shifted each of the reduction potentials of the coordinated benzoquinone anodically by 0.50 to 1.5 V, depending on the strength of the Lewis acid, with stronger Lewis acids exhibiting a larger effect on the reduction potential. Coordination of a second Lewis acid further altered each of the reduction potentials by an additional 0.70 to 1.6 V. Replacing one of the Lewis acids with a proton resulted in the ability to modify the pKa of the protonated Lewis acid-Q/[Q]˙-/[Q]2- adducts by about 10 pKa units, in addition to being able to alter the ability to transfer a hydrogen atom by 10 kcal mol-1, and the capacity to transfer a hydride by about 30 kcal mol-1.
Collapse
Affiliation(s)
- Brena L Thompson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA.
| | | |
Collapse
|
15
|
Weberg AB, McCollom SP, Thierer LM, Gau MR, Carroll PJ, Tomson NC. Using internal electrostatic fields to manipulate the valence manifolds of copper complexes. Chem Sci 2021; 12:4395-4404. [PMID: 34163703 PMCID: PMC8179517 DOI: 10.1039/d0sc06364a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of tetradentate tris(phosphinimine) ligands (R3P3tren) was developed and bound to CuI to form the trigonal pyramidal, C3v-symmetric cuprous complexes [R3P3tren-Cu][BArF4] (1PR3) (PR3 = PMe3, PMe2Ph, PMePh2, PPh3, PMe2(NEt2), BArF4 = B(C6F5)4). Electrochemical studies on the CuI complexes were undertaken, and the permethylated analog, 1PMe3, was found to display an unprecedentedly cathodic CuI/CuII redox potential (−780 mV vs. Fc/Fc+ in isobutyronitrile). Elucidation of the electronic structures of 1PR3via density functional theory (DFT) studies revealed atypical valence manifold configurations, resulting from strongly σ-donating phosphinimine moieties in the xy-plane that destabilize 2e (dxy/dx2−y2) orbital sets and uniquely stabilized a1 (dz2) orbitals. Support is provided that the a1 stabilizations result from intramolecular electrostatic fields (ESFs) generated from cationic character on the phosphinimine moieties in R3P3tren. This view is corroborated via 1-dimensional electrostatic potential maps along the z-axes of 1PR3 and their isostructural analogues. Experimental validation of this computational model is provided upon oxidation of 1PMe3 to the cupric complex [Me3P3tren-Cu][OTf]2 (2PMe3), which displays a characteristic Jahn–Teller distortion in the form of a see-saw, pseudo-Cs-symmetric geometry. A systematic anodic shift in the potential of the CuI/CuII redox couple as the steric bulk in the secondary coordination sphere increases is explained through the complexes' diminishing ability to access the ideal Cs-symmetric geometry upon oxidation. The observations and calculations discussed in this work support the presence of internal electrostatic fields within the copper complexes, which subsequently influence the complexes' properties via a method orthogonal to classic ligand field tuning. Secondary coordination sphere electrostatic effects tune the valence manifolds of copper centers, impacting molecular geometries, photophysical properties, and redox potentials.![]()
Collapse
Affiliation(s)
- Alexander B Weberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Samuel P McCollom
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Laura M Thierer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Michael R Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Patrick J Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Neil C Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
16
|
Symmetry/Asymmetry of the NHN Hydrogen Bond in Protonated 1,8-Bis(dimethylamino)naphthalene. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Experimental and theoretical results are presented based on vibrational spectra and motional dynamics of 1,8-bis(dimethylamino)naphthalene (DMAN) and its protonated forms (DMANH+ and the DMANH+ HSO4− complex). The studies of these compounds have been performed in the gas phase and solid-state. Spectroscopic investigations were carried out by infrared spectroscopy (IR), Raman, and incoherent inelastic neutron scattering (IINS) experimental methods. Density functional theory (DFT) and Car–Parrinello molecular dynamics (CPMD) methods were applied to support our experimental findings. The fundamental investigations of hydrogen bridge vibrations were accomplished on the basis of isotopic substitutions (NH → ND). Special attention was paid to the bridged proton dynamics in the DMANH+ complex, which was found to be affected by interactions with the HSO4− anion.
Collapse
|
17
|
Cunningham DW, Yang JY. Kinetic and mechanistic analysis of a synthetic reversible CO 2/HCO 2- electrocatalyst. Chem Commun (Camb) 2020; 56:12965-12968. [PMID: 32996485 DOI: 10.1039/d0cc05556e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
[Pt(depe)2](PF6)2 electrocatalyzes the reversible conversion between CO2 and HCO2- with high selectivity and low overpotential but low rates. A comprehensive kinetic analysis indicates the rate determining step for CO2 reduction is the reactivity of a Pt hydride intermediate to produce HCO2-. To accelerate catalysis, the use of cationic and hydrogen-bond donor additives are explored.
Collapse
Affiliation(s)
- Drew W Cunningham
- Department of Chemistry, University of California, Irvine, 92617, USA.
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, 92617, USA.
| |
Collapse
|
18
|
Valadbeigi Y. Effects of intramolecular hydrogen bond and electron delocalization on the basicity of proton sponges and superbases with benzene, pyridine, pyrazine and pyrimidine scaffolds. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Rowlands GJ, Severinsen RJ, Buchanan JK, Shaffer KJ, Jameson HT, Thennakoon N, Leito I, Lõkov M, Kütt A, Vianello R, Despotović I, Radić N, Plieger PG. Synthesis and Basicity Studies of Quinolino[7,8- h]quinoline Derivatives. J Org Chem 2020; 85:11297-11308. [PMID: 32786648 DOI: 10.1021/acs.joc.0c01428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Quinolino[7,8-h]quinoline is a superbasic compound, with a pKaH in acetonitrile greater than that of 1,8-bis(dimethylaminonaphthalene) (DMAN), although its synthesis and the synthesis of its derivatives can be problematic. The use of halogen derivatives 4,9-dichloroquinolino[7,8-h]quinoline (16) and 4,9-dibromoquinolino[7,8-h]quinoline (17) as precursors has granted the formation of a range of substituted quinolinoquinolines. The basicity and other properties of quinolinoquinolines can be modified by the inclusion of suitable functionalities. The experimentally obtained pKaH values of quinolino[7,8-h]quinoline derivatives show that N4,N4,N9,N9-tetraethylquinolino[7,8-h]quinoline-4,9-diamine (26) is more superbasic than quinolino[7,8-h]quinoline. Computationally derived pKaH values of quinolinoquinolines functionalized with dimethylamino (NMe2), 1,1,3,3-tetramethylguanidino (N═C(NMe2)2) or N,N,N',N',N″,N″-hexamethylphosphorimidic triamido (N═P(NMe2)3) groups are significantly greater than those of quinolino[7,8-h]quinoline. Overall, electron-donating functionalities are observed to increase the basicity of the quinolinoquinoline moiety, while the substitution of electron-withdrawing groups lowers the basicity.
Collapse
Affiliation(s)
- Gareth J Rowlands
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Rebecca J Severinsen
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Jenna K Buchanan
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Karl J Shaffer
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Heather T Jameson
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Nishani Thennakoon
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Märt Lõkov
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Agnes Kütt
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Robert Vianello
- Rud̵er Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| | - Ines Despotović
- Rud̵er Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| | - Nena Radić
- Rud̵er Bošković Institute, Bijenička cesta 54, Zagreb 10000, Croatia
| | - Paul G Plieger
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
20
|
Valadbeigi Y. Proton sponges and superbases with nitrogen, phosphorus, arsenic, oxygen, sulfur, and selenium as proton acceptor sites. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Effective Control of the Electron‐donating Ability of Phosphines by using Phosphazenyl and Phosphoniumylidyl Substituents. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Kögel JF, Ullrich S, Kovačević B, Wagner S, Sundermeyer J. Mono‐Phosphazenyl Phosphines (R
2
N)
3
P=N–P(NR
2
)
2
– Strong P‐Bases, P‐Donors, and P‐Nucleophiles for the Construction of Chelates. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Julius F. Kögel
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 35032 Marburg Germany
| | - Sebastian Ullrich
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 35032 Marburg Germany
| | - Borislav Kovačević
- Group for Computational Life Sciences Rudjer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Sebastian Wagner
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 35032 Marburg Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie Philipps‐Universität Marburg Hans‐Meerwein‐Straße 35032 Marburg Germany
| |
Collapse
|
23
|
Valadbeigi Y, Vianello R. Is It Possible to Achieve Organic Superbases beyond the Basicity Limit Using Tetrahedrane Scaffolds? ChemistrySelect 2020. [DOI: 10.1002/slct.202001407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry Faculty of Science Imam Khomeini International University Qazvin, P.O. Box 288 Iran
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 10002 Zagreb Croatia
| |
Collapse
|
24
|
Lohmeyer L, Kaifer E, Wadepohl H, Himmel H. 1,2,5,6-Tetrakis(guanidino)-Naphthalenes: Electron Donors, Fluorescent Probes and Redox-Active Ligands. Chemistry 2020; 26:5834-5845. [PMID: 32017282 PMCID: PMC7318682 DOI: 10.1002/chem.201905471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/23/2020] [Indexed: 01/07/2023]
Abstract
New redox-active 1,2,5,6-tetrakis(guanidino)-naphthalene compounds, isolable and storable in the neutral and deep-green dicationic redox states and oxidisable further in two one-electron steps to the tetracations, are reported. Protonation switches on blue fluorescence, with the fluorescence intensity (quantum yield) increasing with the degree of protonation. Reactions with N-halogenosuccinimides or N-halogenophthalimides led to a series of new redox-active halogeno- and succinimido-/phthalimido-substituted derivatives. These highly selective reactions are proposed to proceed via the tri- or tetracationic state as the intermediate. The derivatives are oxidised reversibly at slightly higher potentials than that of the unsubstituted compounds to dications and further to tri- and tetracations. The integration of redox-active ligands in the transition-metal complexes shifts the redox potentials to higher values and also allows reversible oxidation in two potentially separated one-electron steps.
Collapse
Affiliation(s)
- Lukas Lohmeyer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
25
|
Saeidian H, Barfinejad E, Vessally E. Effect of aromaticity and ring strain on proton affinity of aziridine and amidine skeletons: a DFT study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01899-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Harnessing aromaticity to design of phosphazene and ylidophosphorane superbases: A theoretical study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Saeidian H, Mirjafary Z. Engineering non-ionic carbon super- and hyperbases by a computational DFT approach: substituted allenes have unprecedented cation affinities. NEW J CHEM 2020. [DOI: 10.1039/d0nj02207a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DFT calculations reveal that allenes substituted by a cyclopropene or a methylenecyclopropene group, offer suitable scaffolds for tailoring powerful carbon bases. The protonation at C(sp) site provide superbases with PAs = 879–1218 kJ mol−1.
Collapse
Affiliation(s)
- Hamid Saeidian
- Department of Science
- Payame Noor University (PNU)
- Tehran
- Iran
| | - Zohreh Mirjafary
- Department of Chemistry
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| |
Collapse
|
28
|
Leesment A, Kaljurand I, Trummal A, Kütt A, Netscher T, Bonrath W, Leito I. Validation and extension of the gas-phase superacidity scale. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019:e8598. [PMID: 31756781 DOI: 10.1002/rcm.8598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE In recent years it has become increasingly evident that the previously reported experimental gas-phase acidity (GA) values of several strong acids differ markedly from the corresponding high-level computational values. In this work, the superacidic part of the current gas-phase acidity scale was validated and extended. METHODS For that, the strongly acidic section of the gas-phase acidity scale was remeasured using the equilibrium Fourier transform ion cyclotron resonance (FTICR-MS) method, adding new compounds and introducing methodological changes. In particular, a novel approach for anchoring the scale was used - the results were anchored to the computational (W1BD) GA values of trifluoromethanesulfonic acid and bis(fluorosulfonyl)imide (291.3 and 286.2 kcal mol-1 , respectively). RESULTS The newly measured section consists of 20 gas-phase superacids and its consistency standard deviation is 0.2 kcal mol-1 , indicating good consistency. In contrast to the previously reported experimental gas-phase acidities for a number of important superacids, the current results are consistent with high-level theoretical GA values. Structure-acidity relationships based on the current results as well as available MeCN and DCE acidity data were described and explained. CONCLUSIONS The introduced methodological innovations were found to be adequate and strong evidence is presented in support of the current GA values of the strong acids.
Collapse
Affiliation(s)
- Andre Leesment
- Institute of Chemistry, University of Tartu, 14a Ravila Street, Tartu, 50411, Estonia
| | - Ivari Kaljurand
- Institute of Chemistry, University of Tartu, 14a Ravila Street, Tartu, 50411, Estonia
| | - Aleksander Trummal
- National Institute of Chemical Physics and Biophysics, 23 Akadeemia tee, Tallinn, 12618, Estonia
| | - Agnes Kütt
- Institute of Chemistry, University of Tartu, 14a Ravila Street, Tartu, 50411, Estonia
| | - Thomas Netscher
- DSM Nutritional Products, Research and Development, Basel, CH-4002, Switzerland
| | - Werner Bonrath
- DSM Nutritional Products, Research and Development, Basel, CH-4002, Switzerland
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, 14a Ravila Street, Tartu, 50411, Estonia
| |
Collapse
|
29
|
Ullrich S, Barić D, Xie X, Kovačević B, Sundermeyer J. Basicity Enhancement by Multiple Intramolecular Hydrogen Bonding in Organic Superbase N,N′,N″,N‴-Tetrakis(3-(dimethylamino)propyl)triaminophosphazene. Org Lett 2019; 21:9142-9146. [DOI: 10.1021/acs.orglett.9b03521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Ullrich
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Danijela Barić
- The Group for Computational Life Sciences, Ruđer Bošković Institute, Bijenička c. 54, HR-10000 Zagreb, Croatia
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Borislav Kovačević
- The Group for Computational Life Sciences, Ruđer Bošković Institute, Bijenička c. 54, HR-10000 Zagreb, Croatia
| | - Jörg Sundermeyer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| |
Collapse
|
30
|
Tshepelevitsh S, Kütt A, Lõkov M, Kaljurand I, Saame J, Heering A, Plieger PG, Vianello R, Leito I. On the Basicity of Organic Bases in Different Media. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900956] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Agnes Kütt
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Märt Lõkov
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Ivari Kaljurand
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Jaan Saame
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Agnes Heering
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| | - Paul G. Plieger
- School of Fundamental Sciences; Massey University; Private Bag 11 222 Palmerston North New Zealand
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group; Ruđer Bošković Institute; Bijenička cesta 54 10000 Zagreb Croatia
| | - Ivo Leito
- Institute of Chemistry; University of Tartu; Ravila 14a 50411 Tartu Estonia
| |
Collapse
|
31
|
Mathis CL, Geary J, Ardon Y, Reese MS, Philliber MA, VanderLinden RT, Saouma CT. Thermodynamic Analysis of Metal–Ligand Cooperativity of PNP Ru Complexes: Implications for CO2 Hydrogenation to Methanol and Catalyst Inhibition. J Am Chem Soc 2019; 141:14317-14328. [DOI: 10.1021/jacs.9b06760] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheryl L. Mathis
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Jackson Geary
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Yotam Ardon
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Maxwell S. Reese
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Mallory A. Philliber
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Ryan T. VanderLinden
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Caroline T. Saouma
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| |
Collapse
|
32
|
Ullrich S, Kovačević B, Xie X, Sundermeyer J. Phosphazenyl Phosphines: The Most Electron‐Rich Uncharged Phosphorus Brønsted and Lewis Bases. Angew Chem Int Ed Engl 2019; 58:10335-10339. [DOI: 10.1002/anie.201903342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Sebastian Ullrich
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 35032 Marburg Germany
| | - Borislav Kovačević
- The Group for Computational Life SciencesRudjer Bošković Institute Bijenička c. 54 10000 Zagreb Croatia
| | - Xiulan Xie
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 35032 Marburg Germany
| | - Jörg Sundermeyer
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 35032 Marburg Germany
| |
Collapse
|
33
|
Ullrich S, Kovačević B, Xie X, Sundermeyer J. Phosphazenylphosphine: Die elektronenreichsten ungeladenen Brønsted‐ und Lewis‐Phosphor‐Basen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sebastian Ullrich
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 35032 Marburg Deutschland
| | - Borislav Kovačević
- The Group for Computational Life SciencesRudjer Bošković Institute Bijenička 54 HR-10000 Zagreb Kroatien
| | - Xiulan Xie
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 35032 Marburg Deutschland
| | - Jörg Sundermeyer
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Straße 35032 Marburg Deutschland
| |
Collapse
|
34
|
Xu J, Mieres-Perez J, Sanchez-Garcia E, Lee JK. Gas-Phase Deprotonation of Benzhydryl Cations: Carbene Basicity, Multiplicity, and Rearrangements. J Org Chem 2019; 84:7685-7693. [PMID: 31008604 DOI: 10.1021/acs.joc.9b00496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many fundamental properties of carbenes, particularly basicity, remain poorly understood. Herein, an experimental and computational examination of the deprotonation of a series of benzhydryl cations has been undertaken. These studies represent the first attempt at providing experimental values for diarylcarbene basicities. Pathways to deprotonation, including whether the singlet or triplet carbene is formed, are probed. Because diarylcarbenes are expected to be among the strongest organic bases known, assessing the energetics of protonation of these species is of fundamental importance for a wide range of chemical processes.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Joel Mieres-Perez
- Computational Biochemistry, Center of Medical Biotechnology , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
35
|
Khademloo E, Saeidian H, Mirjafary Z, Aliabad JM. Design of Robust Organosuperbases and Anion Receptors by Combination of Azine Heterocycle Skeleton and Phosphazene Motif. ChemistrySelect 2019. [DOI: 10.1002/slct.201803958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elham Khademloo
- Department of ChemistryScience and Research BranchIslamic Azad University Tehran Iran
| | - Hamid Saeidian
- Department of SciencePayame Noor University (PNU) P.O. Box: 19395–4697 Tehran Iran
| | - Zohreh Mirjafary
- Department of ChemistryScience and Research BranchIslamic Azad University Tehran Iran
| | | |
Collapse
|
36
|
Saeidian H, Barfinejad E. Design of Exceptional Strong Organosuperbases Based on Iminophosphorane and Azaphosphiridine Derivatives: Harnessing Ring Strain and Aromaticity to Engineer Neutral Superbases. ChemistrySelect 2019. [DOI: 10.1002/slct.201804025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hamid Saeidian
- Department of SciencePayame Noor University (PNU), P.O. Box 19395–4697 Tehran Iran
| | - Ehsan Barfinejad
- Department of SciencePayame Noor University (PNU), P.O. Box 19395–4697 Tehran Iran
| |
Collapse
|
37
|
Teegardin KA, Gotcher L, Weaver JD. Formation of Non-Natural α,α-Disubstituted Amino Esters via Catalytic Michael Addition. Org Lett 2018; 20:7239-7244. [PMID: 30387616 DOI: 10.1021/acs.orglett.8b03161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enolate monoanion of amino esters is explored, and the first catalytic Michael addition of α-amino esters is demonstrated. These studies indicate that the acidity of the αC-H is the primary factor determining reactivity. Thus, polyfluorophenylglycine amino esters yield novel α-amino esters in the presence of a catalytic amount of a guanidine-derived base and Michael acceptors. Reactivity requires an acidic N-H, which is accomplished using common protecting groups such as N-Bz, N-Boc, and N-Cbz. Calculations and labeling experiments provide insight into the governing principles in which a key C-to-N proton transfer occurs, resulting in an expansion of the scope to include a number of natural amino esters. The study culminates with a late-stage functionalization of peptidic γ-secretase inhibitor, DAPT.
Collapse
Affiliation(s)
- Kip A Teegardin
- Department of Chemistry , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Lacey Gotcher
- Department of Chemistry , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Jimmie D Weaver
- Department of Chemistry , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| |
Collapse
|
38
|
Adsorption of neutral and protonated Lewis bases on
$$\hbox {Na}_{8}$$
Na
8
-nanocluster: basicity enhancement of the Lewis bases. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Despotović I. Basicity of Some Pyridinophanes in Gas Phase and Acetonitrile – a DFT Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201801449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ines Despotović
- Division of Physical ChemistryRuđer Bošković Institute, Bijenička 54 HR-10002 Zagreb Croatia
| |
Collapse
|
40
|
Ingrosso F, Ruiz-López MF. Electronic Interactions in Iminophosphorane Superbase Complexes with Carbon Dioxide. J Phys Chem A 2018; 122:1764-1770. [PMID: 29346729 DOI: 10.1021/acs.jpca.7b11853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iminophosphoranes or phosphazenes are an important class of compounds with increasing use in synthetic organic chemistry as neutral organic superbases exhibiting low nucleophilicity. Their electronic structure and therefore their properties strongly depend on substitution, but there have been very few theoretical studies devoted to this topic, and more specifically to the formation of electron donor-acceptor complexes of iminophosphoranes with electrophiles. In this work, we have investigated the interaction with carbon dioxide at different ab initio levels. Carbon dioxide usually behaves as a Lewis acid and the reaction with iminiphosphoranes has been described as a nonconventional aza-Wittig process leading to isocyanates. The reaction can be conducted in supercritical CO2 conditions (carbon dioxide acts as both solvent and reactant), which is a promising strategy in the context of green chemistry. Our calculations have been carried out at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level for model systems and at the M06-2X/6-611+G(d,p) level for a larger species used in experiments. The electronic interactions and the interaction energies are analyzed and discussed in detail using the natural bond orbital method. Proton affinities and gas-phase basicities are provided as well.
Collapse
Affiliation(s)
- Francesca Ingrosso
- SRSMC, University of Lorraine , BP 70239, 54506 Vandoeuvre-lès-Nancy, France.,CNRS, UMR 7565 , BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Manuel F Ruiz-López
- SRSMC, University of Lorraine , BP 70239, 54506 Vandoeuvre-lès-Nancy, France.,CNRS, UMR 7565 , BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
41
|
Tandarić T, Vianello R. Design of Exceptionally Strong Organic Superbases Based on Aromatic Pnictogen Oxides: Computational DFT Analysis of the Oxygen Basicity in the Gas Phase and Acetonitrile Solution. J Phys Chem A 2018; 122:1464-1471. [DOI: 10.1021/acs.jpca.7b11945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tana Tandarić
- Computational Organic Chemistry and Biochemistry Group, Rud̵er Bošković Institute, Zagreb 10000, Croatia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Rud̵er Bošković Institute, Zagreb 10000, Croatia
| |
Collapse
|
42
|
Valadbeigi Y. Superbasicity of 1,3,5-cycloheptatriene derivatives and their proton sponges in gas phase. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Raczyńska ED, Gal JF, Maria PC, Michalec P, Zalewski M. Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin. J Phys Chem A 2017; 121:8706-8718. [DOI: 10.1021/acs.jpca.7b09338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ewa D. Raczyńska
- Department
of Chemistry, Warsaw University of Life Science, ul. Nowoursynowska
159c, 02-776 Warszawa, Poland
| | - Jean-François Gal
- Institut
de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France
| | - Pierre-Charles Maria
- Institut
de Chimie de Nice, UMR 7272, Université Côte d’Azur, Parc Valrose, 06108 Nice, France
| | - Piotr Michalec
- Department
of Chemistry, Warsaw University of Life Science, ul. Nowoursynowska
159c, 02-776 Warszawa, Poland
| | - Marcin Zalewski
- Department
of Chemistry, Warsaw University of Life Science, ul. Nowoursynowska
159c, 02-776 Warszawa, Poland
| |
Collapse
|
44
|
Li H, Aquino AJA, Cordes DB, Hase WL, Krempner C. Electronic nature of zwitterionic alkali metal methanides, silanides and germanides - a combined experimental and computational approach. Chem Sci 2017; 8:1316-1328. [PMID: 28451273 PMCID: PMC5360169 DOI: 10.1039/c6sc02390h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 11/24/2022] Open
Abstract
Zwitterionic group 14 complexes of the alkali metals of formula [C(SiMe2OCH2CH2OMe)3M], (M-1), [Si(SiMe2OCH2CH2OMe)3M], (M-2), [Ge(SiMe2OCH2CH2OMe)3M], (M-3), where M = Li, Na or K, have been prepared, structurally characterized and their electronic nature was investigated by computational methods. Zwitterions M-2 and M-3 were synthesized via reactions of [Si(SiMe2OCH2CH2OMe)4] (2) and [Ge(SiMe2OCH2CH2OMe)4] (3) with MOBu t (M = Li, Na or K), resp., in almost quantitative yields, while M-1 were prepared from deprotonation of [HC(SiMe2OCH2CH2OMe)3] (1) with LiBu t , NaCH2Ph and KCH2Ph, resp. X-ray crystallographic studies and DFT calculations in the gas-phase, including calculations of the NPA charges confirm the zwitterionic nature of these compounds, with the alkali metal cations being rigidly locked and charge separated from the anion by the internal OCH2CH2OMe donor groups. Natural bond orbital (NBO) analysis and the second order perturbation theory analysis of the NBOs reveal significant hyperconjugative interactions in M-1-M-3, primarily between the lone pair and the antibonding Si-O orbitals, the extent of which decreases in the order M-1 > M-2 > M-3. The experimental basicities and the calculated gas-phase basicities of M-1-M-3 reveal the zwitterionic alkali metal methanides M-1 to be significantly stronger bases than the analogous silanides M-2 and germanium M-3.
Collapse
Affiliation(s)
- H Li
- Texas Tech University , Department of Chemistry and Biochemistry , Box 41061 , Lubbock , Texas 79409-1061 , USA .
| | - A J A Aquino
- Texas Tech University , Department of Chemistry and Biochemistry , Box 41061 , Lubbock , Texas 79409-1061 , USA .
| | - D B Cordes
- Texas Tech University , Department of Chemistry and Biochemistry , Box 41061 , Lubbock , Texas 79409-1061 , USA .
| | - W L Hase
- Texas Tech University , Department of Chemistry and Biochemistry , Box 41061 , Lubbock , Texas 79409-1061 , USA .
| | - C Krempner
- Texas Tech University , Department of Chemistry and Biochemistry , Box 41061 , Lubbock , Texas 79409-1061 , USA .
| |
Collapse
|
45
|
Substituted conformationally restricted guanidine derivatives: Probing the α2-adrenoceptors’ binding pocket. Eur J Med Chem 2016; 123:48-57. [DOI: 10.1016/j.ejmech.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 11/21/2022]
|
46
|
Raczyńska ED, Gal JF, Maria PC. Enhanced Basicity of Push-Pull Nitrogen Bases in the Gas Phase. Chem Rev 2016; 116:13454-13511. [PMID: 27739663 DOI: 10.1021/acs.chemrev.6b00224] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X)n, where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity. This paper presents an analysis of the exceptional gas-phase basicity, mostly in terms of experimental data, in relation with structure and conjugation of various subfamilies of push-pull nitrogen bases: nitriles, azoles, azines, amidines, guanidines, vinamidines, biguanides, and phosphazenes. The strong basicity of biomolecules containing a push-pull nitrogen substructure, such as bioamines, amino acids, and peptides containing push-pull side chains, nucleobases, and their nucleosides and nucleotides, is also analyzed. Progress and perspectives of experimental determinations of GBs and PAs of highly basic compounds, termed as "superbases", are presented and benchmarked on the basis of theoretical calculations on existing or hypothetical molecules.
Collapse
Affiliation(s)
- Ewa D Raczyńska
- Department of Chemistry, Warsaw University of Life Sciences (SGGW) , ul. Nowoursynowska 159c, 02-776 Warszawa, Poland
| | - Jean-François Gal
- Institut de Chimie de Nice (ICN) - UMR CNRS 7272, University Nice Sophia Antipolis , Parc Valrose, 06108 Nice Cedex 2, France
| | - Pierre-Charles Maria
- Institut de Chimie de Nice (ICN) - UMR CNRS 7272, University Nice Sophia Antipolis , Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
47
|
A theoretical study on the efficiency and role of guanidines-based organic superbases on carbon dioxide utilization in quinazoline-2,4(1H, 3H)-diones synthesis. Struct Chem 2016. [DOI: 10.1007/s11224-016-0842-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Schwamm RJ, Vianello R, Maršavelski A, García MÁ, Claramunt RM, Alkorta I, Saame J, Leito I, Fitchett CM, Edwards AJ, Coles MP. (15)N NMR Spectroscopy, X-ray and Neutron Diffraction, Quantum-Chemical Calculations, and UV/vis-Spectrophotometric Titrations as Complementary Techniques for the Analysis of Pyridine-Supported Bicyclic Guanidine Superbases. J Org Chem 2016; 81:7612-25. [PMID: 27494395 DOI: 10.1021/acs.joc.6b01330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pyridine substituted with one and two bicyclic guanidine groups has been studied as a potential source of superbases. 2-{hpp}C5H4N (I) and 2,6-{hpp}2C5H3N (II) (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) were protonated using [HNEt3][BPh4] to afford [I-H][BPh4] (1a), [II-H][BPh4] (2), and [II-H2][BPh4]2 (3). Solution-state (1)H and (15)N NMR spectroscopy shows a symmetrical cation in 2, indicating a facile proton-exchange process in solution. Solid-state (15)N NMR data differentiates between the two groups, indicating a mixed guanidine/guanidinium. X-ray diffraction data are consistent with protonation at the imine nitrogen, confirmed for 1a by single-crystal neutron diffraction. The crystal structure of 1a shows association of two [I-H](+) cations within a cage of [BPh4](-) anions. Computational analysis performed in the gas phase and in MeCN solution shows that the free energy barrier to transfer a proton between imino centers in [II-H](+) is 1 order of magnitude lower in MeCN than in the gas phase. The results provide evidence that linking hpp groups with the pyridyl group stabilizes the protonation center, thereby increasing the intrinsic basicity in the gas phase, while the bulk prevents efficient cation solvation, resulting in diminished pKa(MeCN) values. Spectrophotometrically measured pKa values are in excellent agreement with calculated values and confirm that I and II are superbases in solution.
Collapse
Affiliation(s)
- Ryan J Schwamm
- School of Chemical and Physical Sciences, Victoria University of Wellington , P.O. Box 600, Wellington 6012, New Zealand
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruder Bošković Institute , Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Aleksandra Maršavelski
- Computational Organic Chemistry and Biochemistry Group, Ruder Bošković Institute , Bijenička cesta 54, 10000 Zagreb, Croatia
| | - M Ángeles García
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED , Paseo Senda del Rey 9, 28040 Madrid, Spain
| | - Rosa M Claramunt
- Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED , Paseo Senda del Rey 9, 28040 Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC) , Juan de la Cierva 3, 28006 Madrid, Spain
| | - Jaan Saame
- Institute of Chemistry, University of Tartu , 14a Ravila Street, 50411, Tartu, Estonia
| | - Ivo Leito
- Institute of Chemistry, University of Tartu , 14a Ravila Street, 50411, Tartu, Estonia
| | | | - Alison J Edwards
- Bragg Institute, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2234, Australia
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington , P.O. Box 600, Wellington 6012, New Zealand
| |
Collapse
|