1
|
Zhang Y, Levin N, Kang L, Müller F, Zobel M, DeBeer S, Leitner W, Bordet A. Design and Understanding of Adaptive Hydrogenation Catalysts Triggered by the H 2/CO 2-Formic Acid Equilibrium. J Am Chem Soc 2024; 146:30057-30067. [PMID: 39322628 DOI: 10.1021/jacs.4c06765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
An adaptive catalytic system for selective hydrogenation was developed exploiting the H2 + CO2 ⇔ HCOOH equilibrium for reversible, rapid, and robust on/off switch of the ketone hydrogenation activity of ruthenium nanoparticles (Ru NPs). The catalyst design was based on mechanistic studies and DFT calculations demonstrating that adsorption of formic acid to Ru NPs on silica results in surface formate species that prevent C═O hydrogenation. Ru NPs were immobilized on readily accessible silica supports modified with guanidinium-based ionic liquid phases (Ru@SILPGB) to generate in situ sufficient amounts of HCOOH when CO2 was introduced into the H2 feed gas for switching off ketone hydrogenation while maintaining the activity for hydrogenation of olefinic and aromatic C═C bonds. Upon shutting down the CO2 supply, the C═O hydrogenation activity was restored in real time due to the rapid decarboxylation of the surface formate species without the need for any changes in the reaction conditions. Thus, the newly developed Ru@SILPGB catalysts allow controlled and alternating production of either saturated alcohols or ketones from unsaturated substrates depending on the use of H2 or H2/CO2 as feed gas. The major prerequisite for design of adaptive catalytic systems based on CO2 as trigger is the ability to shift the H2 + CO2 ⇔ HCOOH equilibrium sufficiently to exploit competing adsorption of surface formate and targeted functional groups. Thus, the concept can be expected to be more generally applicable beyond ruthenium as the active metal, paving the way for next-generation adaptive catalytic systems in hydrogenation reactions more broadly.
Collapse
Affiliation(s)
- Yuyan Zhang
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Liqun Kang
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Felix Müller
- Institute of Crystallography, RWTH Aachen University, 52074 Aachen, Germany
| | - Mirijam Zobel
- Institute of Crystallography, RWTH Aachen University, 52074 Aachen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Ma S, Fan Y, Tang Y, He C, Li Q, Zhao Z, Xu T, Zhang Y. Spectral Characteristics of Unsaturated and Supersaturated Inorganic Aerosols: Insights into Deliquescence Kinetics. J Phys Chem A 2024; 128:6286-6295. [PMID: 39042908 DOI: 10.1021/acs.jpca.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The deliquescence phase transition of atmospheric aerosols is crucial for radiative forcing and atmospheric chemistry. However, the deliquescence kinetics of micrometer-sized aerosols, especially the formation and evolution of surface solution films, remain poorly understood. In this study, IR spectral characteristics were employed for the first time to quantify the solute concentration evolution in surface solution films. At a constant relative humidity (RH) of ∼65%, solution films on NaCl crystals exhibited a very low solute concentration (3.06 ± 0.18 mol/L), comparable to aqueous NaCl droplets above 90% RH. These films reached saturation at ∼74% RH, i.e., the deliquescence RH of NaCl, maintaining a nearly constant saturation level during deliquescence. In contrast, amorphous NaNO3 solids showed supersaturated solution films before deliquescence. Following deliquescence, the saturation level of solution phases increased due to faster solid dissolution rates than liquid water condensation. These findings address knowledge gaps in the complex nonequilibrium dissolution processes of crystalline or amorphous atmospheric aerosols.
Collapse
Affiliation(s)
- Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yingying Tang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Hettiarachchi E, Grassian VH. Heterogeneous Reactions of Phenol on Different Components of Mineral Dust Aerosol: Formation of Oxidized Organic and Nitro-Phenolic Compounds. ACS ES&T AIR 2024; 1:259-272. [PMID: 38633204 PMCID: PMC11019555 DOI: 10.1021/acsestair.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/19/2024]
Abstract
Phenol, a common semi-volatile compound associated with different emissions including from plants and biomass burning, as well as anthropogenic emissions and its derivatives, are important components of secondary organic aerosols (SOAs). Gas and aqueous phase reactions of phenol, in the presence of photochemical drivers, are fairly well understood. However, despite observations showing aromatic content within SOA size and mass increases during dust episodes, the heterogeneous reactions of phenol with mineral dusts are poorly understood. In the current study, surface reactions of phenol at the gas/solid interface with different components of mineral dust including SiO2, α-Fe2O3, and TiO2 have been investigated. Whereas reversible surface adsorption of phenol occurs on SiO2 surfaces, for both α-Fe2O3 and TiO2 surfaces, phenol reacts to form a wide range of OH substituted aromatic products. For α-Fe2O3 surfaces that have been nitrated by gas-phase reactions of nitric acid prior to exposure to phenol, unique compounds form on the surface including nitro-phenolic compounds. Moreover, additional surface chemistry was observed when adsorbed nitro-phenolic products were exposed to gas-phase SO2 as a result of the formation of adsorbed nitrite from nitrate redox chemistry with adsorbed SO2. Overall, this study reveals the extensive chemistry as well as the complexity of reactions of prevalent organic compounds leading to the formation of SOA on mineral surfaces.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry and
Biochemistry, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department of Chemistry and
Biochemistry, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Yang B, Xie Z, Liu J, Gui H, Zhang J, Wei X, Fan Z, Zhang D. Investigating the effect of volatility on the hygroscopicities of acetate nanoparticle aerosols by surface plasmon resonance microscopy. J Environ Sci (China) 2024; 138:167-178. [PMID: 38135385 DOI: 10.1016/j.jes.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 12/24/2023]
Abstract
Under high relative humidity (RH) conditions, the release of volatile components (such as acetate) has a significant impact on the aerosol hygroscopicity. In this work, one surface plasmon resonance microscopy (SPRM) measurement system was introduced to determine the hygroscopic growth factors (GFs) of three acetate aerosols separately or mixed with glucose at different RHs. For Ca(CH3COO)2 or Mg(CH3COO)2 aerosols, the hygroscopic growth trend of each time was lower than that of the previous time in three cyclic humidification from 70% RH to 90% RH, which may be due to the volatility of acetic acid leading to the formation of insoluble hydroxide (Ca(OH)2 or Mg(OH)2) under high RH conditions. Then the third calculated GF (using the Zdanovskii-Stokes-Robinson method) for Ca(CH3COO)2 or Mg(CH3COO)2 in bicomponent aerosols with 1:1 mass ratio were 3.20% or 5.33% lower than that of the first calculated GF at 90% RH. The calculated results also showed that the hygroscopicity change of bicomponent aerosol was negatively correlated with glucose content, especially when the mass ratio of Mg(CH3COO)2 to glucose was 1:2, the GF at 90% RH only decreased by 4.67% after three cyclic humidification. Inductively coupled plasma atomic emission spectrum (ICP-AES) based measurements also indicated that the changes of Mg2+concentration in bicomponent was lower than that of the single-component. The results of this study reveal thatduring the efflorescence transitions of atmospheric nanoparticles, the organic acids diffusion rate may be inhibited by the coating effect of neutral organic components, and the particles aging cycle will be prolonged.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Zhibo Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jianguo Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Huaqiao Gui
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiaoshi Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiuli Wei
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zetao Fan
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Douguo Zhang
- Advanced Laser Technology Laboratory of Anhui Province, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Sit I, Fashina BT, Baldo AP, Leung K, Grassian VH, Ilgen AG. Formic and acetic acid p Ka values increase under nanoconfinement. RSC Adv 2023; 13:23147-23157. [PMID: 37533784 PMCID: PMC10390803 DOI: 10.1039/d2ra07944e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
Organic acids are prevalent in the environment and their acidity and the corresponding dissociation constants can change under varying environmental conditions. The impact of nanoconfinement (when acids are confined within nanometer-scale domains) on physicochemical properties of chemical species is poorly understood and is an emerging field of study. By combining infrared and Raman spectroscopies with molecular dynamics (MD) simulations, we quantified the effect of nanoconfinement in silica nanopores on one of the fundamental chemical reactions-the dissociation of organic acids. The pKa of formic and acetic acids confined within cylindrical silica nanopores with 4 nm diameters were measured. MD models were constructed to calculate the shifts in the pKa values of acetic acid nanoconfined within 1, 2, 3, and 4 nm silica slit pores. Both experiments and MD models indicate a decrease in the apparent acid dissociation constants (i.e., increase in the pKa values) when organic acids are nanoconfined. Therefore, nanoconfinement stabilizes the protonated species. We attribute this observation to (1) a decrease in the average dielectric response of nanoconfined aqueous solutions where charge screening may be decreased; or (2) an increase in proton concentration inside nanopores, which would shift the equilibrium towards the protonated form. Overall, the results of this study provide the first quantification of the pKa values for nanoconfined formic and acetic acids and pave the way for a unifying theory predicting the impact of nanoconfinement on acid-base chemistry.
Collapse
Affiliation(s)
- Izaac Sit
- Department of Nanoengineering, University of California San Diego La Jolla CA 92093 USA
| | - Bidemi T Fashina
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| | - Anthony P Baldo
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| | - Kevin Leung
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories Albuquerque NM 87123 USA
| |
Collapse
|
6
|
Hettiarachchi E, Grassian VH. Heterogeneous Formation of Organonitrates (ON) and Nitroxy-Organosulfates (NOS) from Adsorbed α-Pinene-Derived Organosulfates (OS) on Mineral Surfaces. ACS EARTH & SPACE CHEMISTRY 2022; 6:3017-3030. [PMID: 36561194 PMCID: PMC9762235 DOI: 10.1021/acsearthspacechem.2c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Organonitrates (ON) and nitroxy-organosulfates (NOS) are important components of secondary organic aerosols (SOAs). Gas-phase reactions of α-pinene (C10H16), a primary precursor for several ON compounds, are fairly well understood although formation pathways for NOS largely remain unknown. NOS formation may occur via reactions of ON and organic peroxides with sulfates as well as through radical-initiated photochemical processes. Despite the fact that organosulfates (OS) represent a significant portion of the organic aerosol mass, ON and NOS formation from OS is less understood, especially through nighttime heterogeneous and multiphase chemistry pathways. In the current study, surface reactions of adsorbed α-pinene-derived OS with nitrogen oxides on hematite and kaolinite surfaces, common components of mineral dust, have been investigated. α-Pinene reacts with sulfated mineral surfaces, forming a range of OS compounds on the surface. These OS compounds when adsorbed on mineral surfaces can further react with HNO3 and NO2, producing several ON and NOS compounds as well as several oxidation products. Overall, this study reveals the complexity of reactions of prevalent organic compounds leading to the formation of OS, ON, and NOS via heterogeneous and multiphase reaction pathways on mineral surfaces. It is also shown that this chemistry is mineralogy-specific.
Collapse
|
7
|
Fischer AF, Iglesia E. The Nature of “Hydrogen Spillover”: Site Proximity Effects and Gaseous Intermediates in Hydrogenation Reactions Mediated by Inhibitor-Scavenging Mechanisms. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Hettiarachchi E, Grassian VH. Heterogeneous Reactions of α-Pinene on Mineral Surfaces: Formation of Organonitrates and α-Pinene Oxidation Products. J Phys Chem A 2022; 126:4068-4079. [PMID: 35709385 PMCID: PMC9251774 DOI: 10.1021/acs.jpca.2c02663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organonitrates (ON) are important components of secondary organic aerosols (SOAs). α-Pinene (C10H16), the most abundant monoterpene in the troposphere, is a precursor for the formation of several of these compounds. ON from α-pinene can be produced in the gas phase via photochemical processes and/or following reactions with oxidizers including hydroxyl radical and ozone. Gas-phase nitrogen oxides (NO2, NO3) are N sources for ON formation. Although gas-phase reactions of α-pinene that yield ON are fairly well understood, little is known about their formation through heterogeneous and multiphase pathways. In the current study, surface reactions of α-pinene with nitrogen oxides on hematite (α-Fe2O3) and kaolinite (SiO2Al2O3(OH)4) surfaces, common components of mineral dust, have been investigated. α-Pinene oxidizes upon adsorption on kaolinite, forming pinonaldehyde, which then dimerizes on the surface. Furthermore, α-pinene is shown to react with adsorbed nitrate species on these mineral surfaces producing multiple ON and other oxidation products. Additionally, gas-phase oxidation products of α-pinene on mineral surfaces are shown to more strongly adsorb on the surface compared to α-pinene. Overall, this study reveals the complexity of reactions of prevalent organic compounds such as α-pinene with adsorbed nitrate and nitrogen dioxide, revealing new heterogeneous reaction pathways for SOA formation that is mineralogy specific.
Collapse
Affiliation(s)
- Eshani Hettiarachchi
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Wang R, Yang N, Li J, Xu L, Tsona NT, Du L, Wang W. Heterogeneous reaction of SO 2 on CaCO 3 particles: Different impacts of NO 2 and acetic acid on the sulfite and sulfate formation. J Environ Sci (China) 2022; 114:149-159. [PMID: 35459480 DOI: 10.1016/j.jes.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/14/2023]
Abstract
Despite the heterogeneous reaction of sulfur dioxide (SO2) on mineral dust particles significantly affects the atmospheric environment, the effect of acidic gases on the formation of sulfite and sulfate from this reaction is not particularly clear. In this work, using the in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique, we employed a mineral dust particle model (CaCO3) combined with NO2 and acetic acid to investigate their effects on the heterogeneous reaction of SO2 on CaCO3 particles. It was found that water vapor can promote the formation of sulfite and simulated radiation can facilitate the oxidation of sulfite to sulfate. The addition of NO2 or acetic acid to the reaction system altered the production of sulfate and sulfite accordingly. There was a synergistic effect between NO2 and SO2 that promoted the oxidation of sulfite to sulfate, and a competitive effect between acetic acid and SO2 that inhibited the formation of sulfite. Moreover, light and water vapor can also affect the heterogeneous reaction of SO2 with the coexistence of multiple gases. These findings improve our understanding of the effects of organic and inorganic gases and environmental factors on the formation of sulfite and sulfate in heterogeneous reactions.
Collapse
Affiliation(s)
- Ruixue Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ning Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Wang T, Liu Y, Deng Y, Cheng H, Yang Y, Feng Y, Zhang L, Fu H, Chen J. Photochemical Oxidation of Water-Soluble Organic Carbon (WSOC) on Mineral Dust and Enhanced Organic Ammonium Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15631-15642. [PMID: 33210909 DOI: 10.1021/acs.est.0c04616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water-soluble organic carbon (WSOC), which is closely related to biogenic emissions, is of great importance in the atmosphere for its ubiquitous existence and rich abundance. Levoglucosan, a typical WSOC, is usually considered to be stable and thus used as a tracer of biomass burning. However, we found that levoglucosan can be photo-oxidized on mineral dust, with formic acid, oxalic acid, glyoxylic acid, 2,3-dioxopropanoic acid, dicarbonic acid, performic acid, mesoxalaldehyde, 2-hydroxymalonaldehyde, carbonic formic anhydride, and 1,3-dioxolane-2,4-dione detected as main products. Further, we observed the heterogeneous uptake of NH3 promoted by the carboxylic acids stemming from the photocatalytic oxidation (PCO) of levoglucosan. The mineral-dust-initiated PCO of levoglucosan and enhanced heterogeneous uptake of NH3, which are highly influenced by irradiation and moisture conditions, were for the first time revealed. The reaction mechanisms and pathways were studied in detail by diffuse reflection infrared Fourier transform spectroscopy (DRIFTS), high-pressure photon ionization time-of-flight mass spectrometry (HPPI-ToF-MS) and flow reactor systems. Diverse WSOC constituents were studied as well, and the reactivity toward NH3 is related to the number of hydroxyl groups of the WSOC molecules. This work reveals a new precursor of secondary organic aerosols and provides experimental evidence of the existence of organic ammonium salts in atmospheric particles.
Collapse
Affiliation(s)
- Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yue Deng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Hanyun Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yiqing Feng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Placencia-Gómez E, Kerisit SN, Mehta HS, Qafoku O, Thompson CJ, Graham TR, Ilton ES, Loring JS. Critical Water Coverage during Forsterite Carbonation in Thin Water Films: Activating Dissolution and Mass Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6888-6899. [PMID: 32383859 DOI: 10.1021/acs.est.0c00897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In geologic carbon sequestration, CO2 is injected into geologic reservoirs as a supercritical fluid (scCO2). The carbonation of divalent silicates exposed to humidified scCO2 occurs in angstroms to nanometers thick adsorbed H2O films. A threshold H2O film thickness is required for carbonate precipitation, but a mechanistic understanding is lacking. In this study, we investigated carbonation of forsterite (Mg2SiO4) in humidified scCO2 (50 °C and 90 bar), which serves as a model system for understanding subsurface divalent silicate carbonation reactivity. Attenuated total reflection infrared spectroscopy pinpointed that magnesium carbonate precipitation begins at 1.5 monolayers of adsorbed H2O. At about this same H2O coverage, transmission infrared spectroscopy showed that forsterite dissolution begins and electrical impedance spectroscopy demonstrated that diffusive transport accelerates. Molecular dynamics simulations indicated that the onset of diffusion is due to an abrupt decrease in the free-energy barriers for lateral mobility of outer-spherically adsorbed Mg2+. The dissolution and mass transport controls on divalent silicate reactivity in wet scCO2 could be advantageous for maximizing permeability near the wellbore and minimize leakage through the caprock.
Collapse
Affiliation(s)
- Edmundo Placencia-Gómez
- Département ArGEnCo/Géophysique appliquée, Urban and Environmental Engineering, University of Liège, Liège 4000, Belgium
| | - Sebastien N Kerisit
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hardeep S Mehta
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Odeta Qafoku
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher J Thompson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Trent R Graham
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Eugene S Ilton
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - John S Loring
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
12
|
Yang N, Tsona NT, Cheng S, Wang Y, Wu L, Ge M, Du L. Effects of NO 2 and SO 2 on the heterogeneous reaction of acetic acid on α-Al 2O 3 in the presence and absence of simulated irradiation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:408-417. [PMID: 31994557 DOI: 10.1039/c9em00550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of NO2 and SO2 on the atmospheric heterogeneous reaction of acetic acid on α-Al2O3 in the presence and absence of simulated irradiation were investigated at ambient conditions by using the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique. The experiment was divided into two parts: the heterogeneous reaction experiment and the pre-adsorption reaction experiment under light and dark conditions. In the heterogeneous reaction experiment, solar radiation stimulates the formation of more acetate and nitrate. At the same time, it can promote the partial conversion of sulfites to sulfates in the heterogeneous reaction of SO2 on α-Al2O3 particles. It can be seen that solar radiation plays a significant role in the heterogeneous reactions of inorganic and organic gases on mineral particles. In the pre-adsorption reaction experiment, the pre-adsorbed nitrate, sulfite or sulfate have conspicuous inhibition influence on the formation of acetate in the presence and absence of simulated irradiation. This indicates that the role of pre-adsorbed species should be given more attention for the heterogeneous reaction of acetic acid on the surface of α-Al2O3 particles. When α-Al2O3 particles were pre-adsorbed by different species, simulated irradiation could facilitate the growth of different amounts of acetate. It was found that the extent to which solar radiation contributes to heterogeneous reactions of different kinds of gases on different mineral particles is different. This further emphasizes the complexities of the heterogeneous conversion processes of atmospheric trace gases on the surface of mineral aerosols, promoting a better understanding of the effects of solar radiation and pre-adsorption on the heterogeneous reaction in the atmosphere.
Collapse
Affiliation(s)
- Ning Yang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Narcisse T Tsona
- School of Life Science, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shumin Cheng
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lingyan Wu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, 46 Zhong Guan Cun S. Ave., Beijing 100081, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
13
|
Yang N, Tsona NT, Cheng S, Li S, Xu L, Wang Y, Wu L, Du L. Competitive reactions of SO 2 and acetic acid on α-Al 2O 3 and CaCO 3 particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134362. [PMID: 31522042 DOI: 10.1016/j.scitotenv.2019.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Heterogeneous reactions between gaseous pollutants and mineral particles have gradually become a research hotspot in the field of atmospheric chemistry. In this paper, competitive reactions between SO2 and acetic acid on the surface of α-Al2O3 and CaCO3 particles were studied by the diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) technique in dark and dry conditions. At the same time, the temporary evolution of the integrated absorbance of acetate and sulfite was investigated to further understand the interaction of SO2 and acetic acid on the mineral particles. On the surface of α-Al2O3 particles, acetate and sulfite can compete for surface-active sites, resulting in a decrease in the total amount of acetates. In dark and dry conditions, the effect of acetic acid on SO2 cannot be obtained by the DRIFTS method. On the surface of CaCO3 particles, SO2 can have a competitive impact on acetic acid by grabbing active sites, leading to a slight decrease of the amount of acetates. The heterogeneous reaction of SO2 can be impeded by coexisting acetic acid, resulting in a drastic reduction of the number of sulfites. It can be seen that the formation mechanisms of acetate and sulfite on the surface of different mineral particles in the atmosphere are different, which provides a variety of ideas and possibilities for the formation of related inorganic and organic salts in the atmosphere.
Collapse
Affiliation(s)
- Ning Yang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Narcisse T Tsona
- School of Life Science, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Shumin Cheng
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Siyang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Li Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lingyan Wu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, 46 Zhong Guan Cun S. Ave., Beijing 100081, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
14
|
Gordon BP, Moore FG, Scatena LF, Richmond GL. On the Rise: Experimental and Computational Vibrational Sum Frequency Spectroscopy Studies of Pyruvic Acid and Its Surface-Active Oligomer Species at the Air–Water Interface. J Phys Chem A 2019; 123:10609-10619. [DOI: 10.1021/acs.jpca.9b08854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, United States
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
15
|
Alves MR, Fang Y, Wall KJ, Vaida V, Grassian VH. Chemistry and Photochemistry of Pyruvic Acid Adsorbed on Oxide Surfaces. J Phys Chem A 2019; 123:7661-7671. [DOI: 10.1021/acs.jpca.9b06563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Alves
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Yuan Fang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kristin J. Wall
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Veronica Vaida
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Vicki H. Grassian
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Nanoengineering and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Qian Y, Deng GH, Lapp J, Rao Y. Interfaces of Gas-Aerosol Particles: Relative Humidity and Salt Concentration Effects. J Phys Chem A 2019; 123:6304-6312. [PMID: 31253043 DOI: 10.1021/acs.jpca.9b03896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The growth of aerosol particles is intimately related to chemical reactions in the gas phase and particle phase and at gas-aerosol particle interfaces. While chemical reactions in gas and particle phases are well documented, there is very little information regarding interface-related reactions. The interface of gas-aerosol particles not only facilitates a physical channel for organic species to enter and exit but also provides a necessary lane for culturing chemical reactions. The physical and chemical properties of gas-particle interfaces have not been studied extensively, nor have the reactions occurring at the interfaces been well researched. This is mainly due to the fact that there is a lack of suitable in situ interface-sensitive analytical techniques for direct measurements of interfacial properties. The motivation behind this research is to understand how interfaces play a role in the growth of aerosol particles. We have developed in situ interface-specific second harmonic scattering to examine interfacial behaviors of molecules of aerosol particles under different relative humidity (RH) and salt concentrations. Both the relative humidity and salt concentration can change the particle size and the phase of the aerosol. RH not only varies the concentration of solutes inside aerosol particles but also changes interfacial hydration in local regions. Organic molecules were found to exhibit distinct behaviors at the interfaces and bulk on NaCl particles under different RH levels. Our quantitative analyses showed that the interfacial adsorption free energies remain unchanged while interfacial areas increase as the relative humidity increases. Furthermore, the surface tension of NaCl particles decreases as the RH increases. Our experimental findings from the novel nonlinear optical scattering technique stress the importance of interfacial water behaviors on aerosol particles in the atmosphere.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Gang-Hua Deng
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Jordan Lapp
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| | - Yi Rao
- Department of Chemistry and Biochemistry , Utah State University , Logan , Utah 84322 , United States
| |
Collapse
|
17
|
Effect of humidity and organic vapors on water absorption of metal oxides. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00870-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Fang Y, Lakey PSJ, Riahi S, McDonald AT, Shrestha M, Tobias DJ, Shiraiwa M, Grassian VH. A molecular picture of surface interactions of organic compounds on prevalent indoor surfaces: limonene adsorption on SiO 2. Chem Sci 2019; 10:2906-2914. [PMID: 30996868 PMCID: PMC6428143 DOI: 10.1039/c8sc05560b] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 01/13/2023] Open
Abstract
Indoor surfaces are often coated with organic compounds yet a molecular understanding of what drives these interactions is poorly understood. Herein, the adsorption and desorption of limonene, an organic compound found in indoor environments, on hydroxylated silica (SiO2) surfaces, used to mimic indoor glass surfaces, is investigated by combining vibrational spectroscopy, atomistic computer simulations and kinetic modeling. Infrared spectroscopy shows the interaction involves hydrogen-bonding between limonene and surface O-H groups. Atomistic molecular dynamics (MD) simulations confirm the existence of π-hydrogen bonding interactions, with one or two hydrogen bonds between the silica O-H groups and the carbon-carbon double bonds, roughly one third of the time. The concentration and temperature dependent adsorption/desorption kinetics as measured by infrared spectroscopy were reproduced with a kinetic model, yielding the adsorption enthalpy of ∼55 kJ mol-1, which is consistent with the value derived from the MD simulations. Importantly, this integrated experimental, theoretical and kinetic modeling study constitutes a conceptual framework for understanding the interaction of organic compounds with indoor relevant surfaces and thus provides important insights into our understanding of indoor air chemistry and indoor air quality.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Chemistry & Biochemistry , University of California , San Diego , La Jolla , 92093 , CA , USA .
| | - Pascale S J Lakey
- Department of Chemistry , University of California , Irvine , 92697 , CA , USA . ;
| | - Saleh Riahi
- Department of Chemistry , University of California , Irvine , 92697 , CA , USA . ;
| | - Andrew T McDonald
- Department of Chemistry & Biochemistry , University of California , San Diego , La Jolla , 92093 , CA , USA .
| | - Mona Shrestha
- Department of Chemistry & Biochemistry , University of California , San Diego , La Jolla , 92093 , CA , USA .
| | - Douglas J Tobias
- Department of Chemistry , University of California , Irvine , 92697 , CA , USA . ;
| | - Manabu Shiraiwa
- Department of Chemistry , University of California , Irvine , 92697 , CA , USA . ;
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California , San Diego , La Jolla , 92093 , CA , USA .
- Scripps Institution of Oceanography , Department of Nanoengineering , University of California , San Diego , La Jolla , 92093 , CA , USA
| |
Collapse
|
19
|
Fang Y, Lesnicki D, Wall KJ, Gaigeot MP, Sulpizi M, Vaida V, Grassian VH. Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study. J Phys Chem A 2019; 123:983-991. [DOI: 10.1021/acs.jpca.8b10224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Fang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Dominika Lesnicki
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55099, Germany
| | - Kristin J. Wall
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry val d’Essonne, Blvd F. Mitterrand, Bat Maupertuis, Evry 91025, France
| | - Marialore Sulpizi
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55099, Germany
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
20
|
Miller QRS, Ilton ES, Qafoku O, Dixon DA, Vasiliu M, Thompson CJ, Schaef HT, Rosso KM, Loring JS. Water Structure Controls Carbonic Acid Formation in Adsorbed Water Films. J Phys Chem Lett 2018; 9:4988-4994. [PMID: 30107739 DOI: 10.1021/acs.jpclett.8b02162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reaction pathways and kinetics in highly structured H2O adsorbed as Ångstrom to nanometer thick layers on mineral surfaces are distinct from those facilitated by bulk liquid water. We investigate the role of the interfacial H2O structure in the reaction of H2O and CO2 to form carbonic acid (H2CO3) in thin H2O films condensed onto silica nanoparticles from humidified supercritical CO2. Rates of carbonic acid formation are correlated with spectroscopic signatures of H2O structure using oxygen isotopic tracers and infrared spectroscopy. While carbonic acid virtually does not form in the supercritical phase, the silica surface catalyzes this reaction by concentrating H2O through adsorption at hydrophilic silanol groups. Within measurement uncertainty, we found no evidence that carbonic acid forms when exclusively ice-like structured H2O is detected at the silica surface. Instead, formation of H2C18O16O2 from H218O and C16O2 was found to be linearly correlated with liquid-like structured H2O that formed on the ice-like layer.
Collapse
Affiliation(s)
- Quin R S Miller
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Eugene S Ilton
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Odeta Qafoku
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - David A Dixon
- Department of Chemistry , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | - Monica Vasiliu
- Department of Chemistry , The University of Alabama , Tuscaloosa , Alabama 35487 , United States
| | | | - Herbert T Schaef
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Kevin M Rosso
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - John S Loring
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| |
Collapse
|
21
|
Yang W, Ma Q, Liu Y, Ma J, Chu B, Wang L, He H. Role of NH3 in the Heterogeneous Formation of Secondary Inorganic Aerosols on Mineral Oxides. J Phys Chem A 2018; 122:6311-6320. [DOI: 10.1021/acs.jpca.8b05130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weiwei Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongchun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ling Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
22
|
Parashar S, Lesnicki D, Sulpizi M. Increased Acid Dissociation at the Quartz/Water Interface. J Phys Chem Lett 2018; 9:2186-2189. [PMID: 29634900 DOI: 10.1021/acs.jpclett.8b00686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As shown by a quite significant amount of literature, acids at the water surface tend to be "less" acid, meaning that their associated form is favored over the conjugated base. What happens at the solid/liquid interface? In the case of the silica/water interface, we show how the acidity of adsorbed molecules can instead increase. Using a free energy perturbation approach in combination with electronic structure-based molecular dynamics simulations, we show how the acidity of pyruvic acid at the quartz/water interface is increased by almost two units. Such increased acidity is the result of the specific microsolvation at the interface and, in particular, of the stabilization of the deprotonated form by the silanols on the quartz surface and the special interfacial water layer.
Collapse
Affiliation(s)
- Shivam Parashar
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Dominika Lesnicki
- Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , 55099 Mainz , Germany
| | - Marialore Sulpizi
- Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , 55099 Mainz , Germany
| |
Collapse
|
23
|
Ji ZR, Zhang Y, Pang SF, Zhang YH. Crystal Nucleation and Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO3 Particles. J Phys Chem A 2017; 121:7968-7975. [DOI: 10.1021/acs.jpca.7b08004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi-Ru Ji
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Yun Zhang
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Shu-Feng Pang
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Yun-Hong Zhang
- The Institute of Chemical
Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
24
|
Alstadt VJ, Kubicki JD, Freedman MA. Competitive Adsorption of Acetic Acid and Water on Kaolinite. J Phys Chem A 2016; 120:8339-8346. [PMID: 27701853 DOI: 10.1021/acs.jpca.6b06968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mineral dust is prevalent in the atmosphere as a result of emissions from natural and anthropogenic sources. As mineral dust particles undergo long-distance transport, they are exposed to trace gases and water vapor. We have characterized the interactions of acetic acid on kaolinite using diffuse reflectance infrared Fourier transform spectroscopy and molecular modeling to determine the chemisorbed species present. After the addition of acetic acid, gas-phase water was introduced to explore how water vapor competes with acetic acid for surface sites. We found that four chemisorbed acetate species are present on kaolinite after exposure to acetic acid in which acetate bonds through a monodentate, bidenatate, or bidentate bridging linkage with an aluminum atom. These species exhibit varying levels of stability after the introduction of water, indicating that water vapor affects the adsorption of organic acids. These results indicate that the type of chemisorbed species determines its stability toward competitive adsorption, which has potential implications for atmospheric composition and ice nucleation.
Collapse
Affiliation(s)
- Valerie J Alstadt
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - James D Kubicki
- Department of Geological Sciences, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Miriam Arak Freedman
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|