1
|
Brady RP, Zhang C, DeFrancisco JR, Barrett BJ, Cheng L, Bragg AE. Multiphoton Control of 6π Photocyclization via State-Dependent Reactant-Product Correlations. J Phys Chem Lett 2021; 12:9493-9500. [PMID: 34559534 DOI: 10.1021/acs.jpclett.1c02353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiphoton excitation promises opportunities for opening new photochemical reaction pathways and controlling photoproduct distributions. We demonstrate photonic control of the 6π photocyclization of ortho-terphenyl to make 4a,4b-dihydrotriphenylene (DHT). Using pump-repump-probe spectroscopy we show that 1 + 1' excitation to a high-lying reactant electronic state generates a metastable species characterized by a red absorption feature that accompanies a repump-induced depletion in the one-photon trans-dihydro product (trans-DHT); signatures of the new photoproduct are clearer for a structural analogue of the reactant that is sterically inhibited against one-photon cyclization. Quantum-chemical computations support assignment of this species to cis-DHT, which is accessible photochemically along a disrotatory coordinate from high-lying electronic states reached by 1 + 1' excitation. We use time-resolved spectroscopy to track photochemical dynamics producing cis-DHT. In total, we demonstrate that selective multiphoton excitation opens a new photoreaction channel in these photocyclizing reactants by taking advantage of state-dependent correlations between reactant and product electronic states.
Collapse
Affiliation(s)
- Ryan P Brady
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Chaoqun Zhang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Justin R DeFrancisco
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Brandon J Barrett
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Sofferman DL, Konar A, Spears KG, Sension RJ. Ultrafast excited state dynamics of provitamin D 3 and analogs in solution and in lipid bilayers. J Chem Phys 2021; 154:094309. [PMID: 33685160 DOI: 10.1063/5.0041375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photochemical ring-opening reaction of 7-dehydrocholesterol (DHC, provitamin D3) is responsible for the light-initiated formation of vitamin D3 in mammalian skin membranes. Visible transient absorption spectroscopy was used to explore the excited state dynamics of DHC and two analogs: ergosterol (provitamin D2) and DHC acetate free in solution and confined to lipid bilayers chosen to model the biological cell membrane. In solution, the excited state dynamics of the three compounds are nearly identical. However, when confined to lipid bilayers, the heterogeneity of the lipid membrane and packing forces imposed on the molecule by the lipid alter the excited state dynamics of these compounds. When confined to lipid bilayers in liposomes formed using DPPC, two solvation environments are identified. The excited state dynamics for DHC and analogs in fluid-like regions of the liposome membrane undergo internal conversion and ring-opening on 1 ps-2 ps time scales, similar to those observed in isotropic solution. In contrast, the excited state lifetime of a subpopulation in regions of lower fluidity is 7 ps-12 ps. The long decay component is unique to these liposomes and results from the structural properties of the lipid bilayer. Additional measurements in liposomes prepared with lipids having slightly longer or shorter alkane tails support this conclusion. In the lipid environments studied, the longest lifetimes are observed for DHC. The unsaturated sterol tail of ergosterol and the acetate group of DHC acetate disrupt the packing around the molecule and permit faster internal conversion and relaxation back to the ground state.
Collapse
Affiliation(s)
- Danielle L Sofferman
- Program in Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Roseanne J Sension
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
3
|
Park S, Choi J, Ki H, Kim KH, Oang KY, Roh H, Kim J, Nozawa S, Sato T, Adachi SI, Kim J, Ihee H. Fate of transient isomer of CH 2I 2: Mechanism and origin of ionic photoproducts formation unveiled by time-resolved x-ray liquidography. J Chem Phys 2019; 150:224201. [PMID: 31202228 DOI: 10.1063/1.5099002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Diiodomethane, CH2I2, in a polar solvent undergoes a unique photoinduced reaction whereby I2 - and I3 - are produced from its photodissociation, unlike for other iodine-containing haloalkanes. While previous studies proposed that homolysis, heterolysis, or solvolysis of iso-CH2I-I, which is a major intermediate of the photodissociation, can account for the formation of I2 - and I3 -, there has been no consensus on its mechanism and no clue for the reason why those negative ionic species are not observed in the photodissociation of other iodine-containing chemicals in the same polar solvent, for example, CHI3, C2H4I2, C2F4I2, I3 -, and I2. Here, using time-resolved X-ray liquidography, we revisit the photodissociation mechanism of CH2I2 in methanol and determine the structures of all transient species and photoproducts involved in its photodissociation and reveal that I2 - and I3 - are formed via heterolysis of iso-CH2I-I in the photodissociation of CH2I2 in methanol. In addition, we demonstrate that the high polarity of iso-CH2I-I is responsible for the unique photochemistry of CH2I2.
Collapse
Affiliation(s)
- Sungjun Park
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jungkweon Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hosung Ki
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Quantum Optics Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | - Heegwang Roh
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, South Korea
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tokushi Sato
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
4
|
Snyder JA, Bragg AE. Ultrafast Pump-Repump-Probe Photochemical Hole Burning as a Probe of Excited-State Reaction Pathway Branching. J Phys Chem Lett 2018; 9:5847-5854. [PMID: 30226782 DOI: 10.1021/acs.jpclett.8b02489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate pump-repump-probe (PRP) transient hole burning as a spectroscopic tool for differentiating reactive from nonreactive deactivation of excited photochemical reactants observed by transient absorption spectroscopy (TAS). This method utilizes a time-delayed, wavelength-tunable ultrafast pulse to alter the excited reactant population, with the impact of "repumping" quantified through depletions in photoproduct absorption. We apply this approach to characterize dynamics affecting the nonadiabatic photocyclization efficiency to form S0 dihydrotriphenylene (DHT) following 266 nm excitation of ortho-terphenyl (OTP). TAS studies revealed bimodal deactivation of OTP*, but neither relaxation time scale (700 fs and 3.0 ps) could be assigned unambiguously to DHT formation due to overlap of excited-state and product spectra. PRP studies reveal that S1 OTP only cyclizes on the slower of these time scales, with the faster process attributable to nonreactive deactivation. We demonstrate that this method offers greater photochemical insights without assuming models to globally fit spectral transients collected by TAS.
Collapse
Affiliation(s)
- Joshua A Snyder
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Arthur E Bragg
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
5
|
Snyder JW, Fales BS, Hohenstein EG, Levine BG, Martínez TJ. A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. J Chem Phys 2018; 146:174113. [PMID: 28477593 DOI: 10.1063/1.4979844] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently developed an algorithm to compute response properties for the state-averaged complete active space self-consistent field method (SA-CASSCF) that capitalized on sparsity in the atomic orbital basis. Our original algorithm was limited to treating small to moderate sized active spaces, but the recent development of graphical processing unit (GPU) based direct-configuration interaction algorithms provides an opportunity to extend this to large active spaces. We present here a direct-compatible version of the coupled perturbed equations, enabling us to compute response properties for systems treated with arbitrary active spaces (subject to available memory and computation time). This work demonstrates that the computationally demanding portions of the SA-CASSCF method can be formulated in terms of seven fundamental operations, including Coulomb and exchange matrix builds and their derivatives, as well as, generalized one- and two-particle density matrix and σ vector constructions. As in our previous work, this algorithm exhibits low computational scaling and is accelerated by the use of GPUs, making possible optimizations and nonadiabatic dynamics on systems with O(1000) basis functions and O(100) atoms, respectively.
Collapse
Affiliation(s)
- James W Snyder
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - B Scott Fales
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Edward G Hohenstein
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, USA
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
6
|
Affiliation(s)
- Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
7
|
Cisneros C, Thompson T, Baluyot N, Smith AC, Tapavicza E. The role of tachysterol in vitamin D photosynthesis – a non-adiabatic molecular dynamics study. Phys Chem Chem Phys 2017; 19:5763-5777. [DOI: 10.1039/c6cp08064b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the role of tachysterol in the regulation of vitamin D photosynthesis, we studied its absorption properties and photodynamics by ab initio methods and non-adiabatic molecular dynamics.
Collapse
Affiliation(s)
- Cecilia Cisneros
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Travis Thompson
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Noel Baluyot
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Adam C. Smith
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry
- California State University
- Long Beach
- Long Beach
- USA
| |
Collapse
|