1
|
Feng Z, Wang B, Zhou J, Liu L, Xie Z, Ma Y. Perylene Bisimide-Functionalized Triphenylmethyl Radicals Showing High Stability and Reversible Electrochemical Redox Properties. Chemistry 2024; 30:e202403244. [PMID: 39352132 DOI: 10.1002/chem.202403244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 11/08/2024]
Abstract
This study presents a series of triphenylmethyl monoradicals incorporating varying numbers of peripheral perylene bisimide (PBI) substituents (1PBI-TTM⋅, 2PBI-TTM⋅ and 3PBI-TTM⋅). The incorporation of electron-withdrawing PBI substituents significantly enhances the stability of these carbon radicals, enabling them to display exceptional electrochemical redox reversibility. Notably, the electronic interplay between the PBI substituents and the central triphenylmethyl core facilitates unique and reversible multi-step redox reactions. Among the reported radicals, the tris-PBI-functionalized radical (3PBI-TTM⋅) demonstrates the remarkable ability to accommodate up to seven electrons under negative potentials, forming high valence anions. This research promotes the development of highly stable carbon radicals with superior electrochemical oxidation-reduction processes, presenting promising avenues for the advancement of electric energy storage technologies.
Collapse
Affiliation(s)
- Zhibin Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bohan Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Kiani A, Zhou W, Wolf LM. Intermolecular interaction potential maps from energy decomposition for interpreting reactivity and intermolecular interactions. Phys Chem Chem Phys 2024; 27:47-61. [PMID: 39530509 DOI: 10.1039/d4cp03237c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The electrostatic potential (ESP) has been widely used to visualize electrostatic interactions about a molecule. However, electrostatic effects are often insufficient for capturing the entirety of an interaction or a reaction of interest. In this investigation, intermolecular interaction potential maps (IMIPs), constructed from the potentials derived from energy decomposition analysis (EDA) using density functional theory, were developed and applied to provide unique insight into molecular interactions and reactivity. To this end, rather than constructing a potential map from probe point charge interactions, IMIPs were constructed from probe interactions with small molecular fragments, including CH3+, CH3-, benzene, and atomic probes including alkali metals, transition metals, and halides. The interaction potentials are further decomposed producing IMIPs for each interaction component using EDA (electrostatic, orbital, steric, etc.). The IMIPs are applied to the study of various interactions including cation-π and anion-π interactions, electrophilic and nucleophilic aromatic substitution, Lewis acid activation, π-stacking, endohedral fullerenes, and select organometallics which reveal fundamental insight into the positional preferences and physical origins of the interactions that otherwise would be difficult to uncover through other surface analyses.
Collapse
Affiliation(s)
- Amin Kiani
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Wentong Zhou
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Lawrence M Wolf
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
3
|
Li X, Zhang Q, Wu W, Lin J, Liu Y, Chen L, Qiu X. Lignin-Based Visible Light-Triggered Nitric Oxide Nanogenerator for Antibacterial Applications. Biomacromolecules 2024; 25:6624-6634. [PMID: 39334552 DOI: 10.1021/acs.biomac.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Nitric oxide (NO) has received growing attention as an effective antibacterial agent with broad-spectrum activity and a low risk of resistance. However, it remains challenging to develop effective, controllable, and biocompatible NO-releasing materials. Here, we report a novel NO nanogenerator (AL-BNN6-PEG) self-assembled by lignin, a UV-absorbing and hydrophobic NO donor (N,N'-disec-butyl-N,N'-dinitroso-1,4-phenylenediamine, BNN6), and PEG-DSPE2000. It was discovered that upon visible light irradiation (450-460 nm), BNN6 can be decomposed by lignin within micellar nanoparticles via a photoinduced electron transfer mechanism in the aqueous medium. Lignin not only served as a sustainable carrier, enhancing the water dispersity of BNN6, but also acted as a biocompatible photosensitizer, triggering BNN6 decomposition with the concomitant release of NO. As a result, the micellar nanoparticles displayed superior antibacterial effects against Gram-negative and Gram-positive bacteria upon visible light illumination. Moreover, MTT assay revealed the negligible cytotoxic effect of the micellar nanoparticles to the mouse fibroblast cells (L929). This research provides more insight into the BNN6 decomposition mechanism and demonstrates a straightforward, effective, and biocompatible strategy for controlled NO-mediated antibacterial applications.
Collapse
Affiliation(s)
- Xiaoya Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Qian Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Weidong Wu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Jinxin Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Yingchun Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
4
|
Lu T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J Chem Phys 2024; 161:082503. [PMID: 39189657 DOI: 10.1063/5.0216272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Analysis of electron wavefunction is a key component of quantum chemistry investigations and is indispensable for the practical research of many chemical problems. After more than ten years of active development, the wavefunction analysis program Multiwfn has accumulated very rich functions, and its application scope has covered numerous aspects of theoretical chemical research, including charge distribution, chemical bond, electron localization and delocalization, aromaticity, intramolecular and intermolecular interactions, electronic excitation, and response property. This article systematically introduces the features and functions of the latest version of Multiwfn and provides many representative examples. Through this article, readers will be able to fully understand the characteristics and recognize the unique value of Multiwfn. The source code and precompiled executable files of Multiwfn, as well as the manual containing a detailed introduction to theoretical backgrounds and very rich tutorials, can all be downloaded for free from the Multiwfn website (http://sobereva.com/multiwfn).
Collapse
Affiliation(s)
- Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100024, People's Republic of China
| |
Collapse
|
5
|
Luan Q, Li J, Hu H, Jiang X, Zhu H, Wei DQ, Wang J, Zhu J. Fully Bio-Based 2,5-Furandicarboxylic Acid Polyester toward Plastics with Mechanically Robust, Excellent Gas Barrier and Fast Degradation. CHEMSUSCHEM 2024; 17:e202400153. [PMID: 38436523 DOI: 10.1002/cssc.202400153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Aliphatic-aromatic copolyesters offer a promising solution to mitigate plastic pollution, but high content of aliphatic units (>40 %) often suffer from diminished comprehensive performances. Poly(butylene oxalate-co-furandicarboxylate) (PBOF) copolyesters were synthesized by precisely controlling the oxalic acid content from 10 % to 60 %. Compared with commercial PBAT, the barrier properties of PBOF for H2O and O2 increased by more than 6 and 26 times, respectively. The introduction of the oxalic acid units allowed the water contact angle to be reduced from 82.5° to 62.9°. Superior hydrophilicity gave PBOF an excellent degradation performance within a 35-day hydrolysis. Interestingly, PBO20F and PBO30F also displayed obvious decrease of molecular weight during hydrolysis, with elastic modulus >1 GPa and tensile strength between 35-54 MPa. PBOF achieved the highest hydrolysis rates among the reported PBF-based copolyesters. The hydrolytic mechanism was further explored based on Fukui function analysis and density functional theory (DFT) calculation. Noncovalent analysis indicated that the water molecules formed hydrogen bonding interaction with adjacent ester groups and thus improved the reactivity of carbonyl carbon. PBOF not only meet the requirements of the high-performance packaging market but can quickly degrade after the end of their usage cycles, providing a new choice for green and environmental protection.
Collapse
Affiliation(s)
- Qingyang Luan
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaoyu Jiang
- Cambridge A level Center, Zhenhai High School of Zhejiang, No.32 Gulou East Road, Zhenhai, Ningbo, 315200, China
| | - Hanxu Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientifc Park, Nanyang, Henan, 47 3006, P.R. China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
6
|
Zhang D, Kishimoto N. Theoretical Analysis of Coordination Geometries in Transition Metal-Histidine Complexes Using Quantum Chemical Calculations. Molecules 2024; 29:3003. [PMID: 38998956 PMCID: PMC11243457 DOI: 10.3390/molecules29133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
A theoretical investigation utilizing density functional theory (DFT) calculations was conducted to explore the coordination complexes formed between histidine (His) ligands and various divalent transition metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+). Conformational exploration of the His ligand was initially performed to assess its stability upon coordination. Both 1:1 and 1:2 of metal-to-ligand complexes were scrutinized to elucidate their structural features and the relative stability of the complexes. This study examined the ability of His to act as a bidentate or tridentate coordinating ligand, along with the differences in coordination geometry when solvent effects were incorporated. The reduced density gradient (RDG) analysis and local electron attachment energy (LEAE) analysis were employed to elucidate the interaction planes and the nucleophilic and electrophilic properties. The electronic properties were analyzed through electrostatic potential (ESP) maps and natural population analysis (NPA) of atomic charge distributions. This computational study provides valuable insights into the diverse coordination modes of His and its interactions with divalent transition metal ions, contributing to a better understanding of the role of this amino acid ligand in the formation of transition metal complexes. The findings can aid in the design and construction of self-assembled structures involving His-metal coordination.
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Naoki Kishimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
7
|
Valatoon S, Alipour M. Reaction rate constant: a theoretical description from local temperature. Phys Chem Chem Phys 2024; 26:14839-14846. [PMID: 38726725 DOI: 10.1039/d4cp01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Application of various descriptors based on electron density and its associated quantities to quantify chemical reactivity within the conceptual density functional theory has recently come into spotlight. Among others and particularly relevant to our study, local temperature based on electron density as well as kinetic energy density, as a measure of the kinetic energy of an electron moving in the Kohn-Sham potential of systems, should be mentioned. In this work, we propose to use the local temperature for describing the reaction rate constant, where our main idea originates from the point that the smaller the local temperature at the reaction center, the easier the electron removal, leading to a larger rate constant. On the basis of theoretical considerations, it is proved that the rate constant variations caused by the substituent effects can well be proportional to the local temperature at the reaction center. In order to numerically validate our proposed approach, we have taken the phenol derivatives with the available experimental rate constants of their O-methylation reaction as working models. The reason for this choice is that one of the most versatile approaches for labeling biologically active compounds with the 11C nuclide for positron emission tomography (PET) is methylation by methyl iodide including 11C nuclide, [11C]MeI, where methylation of phenolic oxygen with [11C]MeI is utilized to label some important tracers for PET studies. Our results unveil that the local temperature changes at the reaction center of the aforementioned reaction are reasonably correlated with the rate constant variations. Hopefully, incorporating the proposed correlations between the local temperature and the kinetics data into a computer control algorithm not only provides a simple tool for predicting the rate constant of the O-methylation reaction for other substituted phenols, but also, as a part of the chemical artificial intelligence, the optimum [11C]MeI labeling conditions for a wide variety of phenol derivatives can be controlled.
Collapse
Affiliation(s)
- Saba Valatoon
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| | - Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran.
| |
Collapse
|
8
|
Liu P, Han J, Chen Y, Yu H, Zhou X, Zhang W. Binding Strengths and Orientations in CO 2 Adsorption on Cationic Scandium Oxides: Governing Factor Revealed by a Combined Infrared Spectroscopy and Theoretical Study. J Phys Chem A 2024; 128:3007-3014. [PMID: 38581407 DOI: 10.1021/acs.jpca.4c01562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Carbon dioxide (CO2) adsorption is a critical step to curbing carbon emissions from fossil fuel combustion. Among various options, transition metal oxides have received extensive attention as promising CO2 adsorbents due to their affordability and sustainability for large-scale use. Here, the nature of binding interactions between CO2 molecules and cationic scandium oxides of different sizes, i.e., ScO+, Sc2O2+, and Sc3O4+, is investigated by mass-selective infrared photodissociation spectroscopy combined with quantum chemical calculations. The well-accepted electrostatic considerations failed to provide explanations for the trend in the binding strengths and variations in the binding orientations between CO2 and metal sites of cationic scandium oxides. The importance of orbital interactions in the driving forces for CO2 adsorption on cationic scandium oxides was revealed by energy decomposition analyses. A molecular surface property, known as the local electron attachment energy, is introduced to elucidate the binding affinity and orientation-specific reactivity of cationic scandium oxides upon the CO2 attachment. This study not only reveals the governing factor in the binding behaviors of CO2 adsorption on cationic scandium oxides but also serves as an archetype for predicting and rationalizing favorable binding sites and orientations in extended surface-adsorbate systems.
Collapse
Affiliation(s)
- Pengcheng Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jia Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yan Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Haili Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
9
|
Li SX, Yang YJ, Chen DL. PB 12+ and P 2B 12+/0/-: The Novel B 12 Cage Doped by Nonmetallic P Atoms. ACS OMEGA 2023; 8:44831-44838. [PMID: 38046297 PMCID: PMC10688167 DOI: 10.1021/acsomega.3c06002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
A new kind of nonmetallic atom-doped boron cluster is described herein theoretically. When a phosphorus atom is added to the B12 motif and loses an electron, a novel B12 cage is obtained, composed of two B3 rings at both ends and one B6 ring in the middle, forming a triangular bifrustum. Interestingly, this B12 cage is formed by three B7 units joined together from three directions at an angle of 120°. When two P atoms are added to the B12 motif, this novel B12 cage is also obtained, and two P atoms are attached to the B3 rings at both ends of the triangular bifrustum, forming a triangular bipyramid (Johnson solid). Amazingly, the global minimums of neutral, monocationic, and monoanionic P2B12+/0/- have the same cage structure with a D3h symmetry; this is the smallest boron cage with the same structure. The P atom has five valence electrons, according to adaptive natural density partitioning bonding analyses of cage PB12+ and P2B12, in addition to one lone pair, the other three electrons of the P atom combine with an electron of each B atom on the B3 ring to form three 2c-2e σ bonds and form three electron sharing bonds with B atoms through covalent interactions, stabilizing the B12 cage. The calculated photoelectron spectra can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of PnB12- (n = 1-2).
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
10
|
Lu J, Paci I, Leitch DC. A broadly applicable quantitative relative reactivity model for nucleophilic aromatic substitution (S NAr) using simple descriptors. Chem Sci 2022; 13:12681-12695. [PMID: 36519044 PMCID: PMC9645419 DOI: 10.1039/d2sc04041g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 07/22/2023] Open
Abstract
We report a multivariate linear regression model able to make accurate predictions for the relative rate and regioselectivity of nucleophilic aromatic substitution (SNAr) reactions based on the electrophile structure. This model uses a diverse training/test set from experimentally-determined relative SNAr rates between benzyl alcohol and 74 unique electrophiles, including heterocycles with multiple substitution patterns. There is a robust linear relationship between the experimental SNAr free energies of activation and three molecular descriptors that can be obtained computationally: the electron affinity (EA) of the electrophile; the average molecular electrostatic potential (ESP) at the carbon undergoing substitution; and the sum of average ESP values for the ortho and para atoms relative to the reactive center. Despite using only simple descriptors calculated from ground state wavefunctions, this model demonstrates excellent correlation with previously measured SNAr reaction rates, and is able to accurately predict site selectivity for multihalogenated substrates: 91% prediction accuracy across 82 individual examples. The excellent agreement between predicted and experimental outcomes makes this easy-to-implement reactivity model a potentially powerful tool for synthetic planning.
Collapse
Affiliation(s)
- Jingru Lu
- Department of Chemistry, University of Victoria 3800 Finnerty Rd. Victoria BC CANADA V8P 5C2
| | - Irina Paci
- Department of Chemistry, University of Victoria 3800 Finnerty Rd. Victoria BC CANADA V8P 5C2
| | - David C Leitch
- Department of Chemistry, University of Victoria 3800 Finnerty Rd. Victoria BC CANADA V8P 5C2
| |
Collapse
|
11
|
Jorner K, Brinck T, Norrby PO, Buttar D. Machine learning meets mechanistic modelling for accurate prediction of experimental activation energies. Chem Sci 2021; 12:1163-1175. [PMID: 36299676 PMCID: PMC9528810 DOI: 10.1039/d0sc04896h] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Accurate prediction of chemical reactions in solution is challenging for current state-of-the-art approaches based on transition state modelling with density functional theory. Models based on machine learning have emerged as a promising alternative to address these problems, but these models currently lack the precision to give crucial information on the magnitude of barrier heights, influence of solvents and catalysts and extent of regio- and chemoselectivity. Here, we construct hybrid models which combine the traditional transition state modelling and machine learning to accurately predict reaction barriers. We train a Gaussian Process Regression model to reproduce high-quality experimental kinetic data for the nucleophilic aromatic substitution reaction and use it to predict barriers with a mean absolute error of 0.77 kcal mol-1 for an external test set. The model was further validated on regio- and chemoselectivity prediction on patent reaction data and achieved a competitive top-1 accuracy of 86%, despite not being trained explicitly for this task. Importantly, the model gives error bars for its predictions that can be used for risk assessment by the end user. Hybrid models emerge as the preferred alternative for accurate reaction prediction in the very common low-data situation where only 100-150 rate constants are available for a reaction class. With recent advances in deep learning for quickly predicting barriers and transition state geometries from density functional theory, we envision that hybrid models will soon become a standard alternative to complement current machine learning approaches based on ground-state physical organic descriptors or structural information such as molecular graphs or fingerprints.
Collapse
Affiliation(s)
- Kjell Jorner
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield UK
| | - Tore Brinck
- Applied Physical Chemistry, Department of Chemistry, CBH, KTH Royal Institute of Technology Stockholm Sweden
| | - Per-Ola Norrby
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg Sweden
| | - David Buttar
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield UK
| |
Collapse
|
12
|
Shi L, Yan C, Li Y, Yang L, Mao W, Xia W, Zhang L, Chen Y, Zhang W. Quantitative and systematic designing of fluorophores enables ultrasensitive distinguishing carbonyls. NEW J CHEM 2021. [DOI: 10.1039/d1nj01777b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The well explored fluorescent reagent NH-4 could exhibit a high fluorescence yield and excellent reactivity towards carbonyl species, which opened up a new efficient way to develop fluorophores for the determination of trace molecules.
Collapse
Affiliation(s)
- Lei Shi
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials
- Feringa Nobel Prize Scientist Joint Research Centre
- Institute of Applied Chemistry
- East China University of Science and Technology
- Shanghai 200237
| | - Yunyu Li
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Lixiang Yang
- Shenzhen Bay Laboratory
- BayRay Innovation Centre
- Shenzhen
- P. R. China
| | - Wenle Mao
- Key Laboratory for Advanced Materials
- Feringa Nobel Prize Scientist Joint Research Centre
- Institute of Applied Chemistry
- East China University of Science and Technology
- Shanghai 200237
| | - Wei Xia
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yu Chen
- Key Laboratory for Advanced Materials
- Feringa Nobel Prize Scientist Joint Research Centre
- Institute of Applied Chemistry
- East China University of Science and Technology
- Shanghai 200237
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
13
|
Key activity descriptors of nickel-iron oxygen evolution electrocatalysts in the presence of alkali metal cations. Nat Commun 2020; 11:6181. [PMID: 33268768 PMCID: PMC7710789 DOI: 10.1038/s41467-020-19729-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/26/2020] [Indexed: 11/08/2022] Open
Abstract
Efficient oxygen evolution reaction (OER) electrocatalysts are pivotal for sustainable fuel production, where the Ni-Fe oxyhydroxide (OOH) is among the most active catalysts for alkaline OER. Electrolyte alkali metal cations have been shown to modify the activity and reaction intermediates, however, the exact mechanism is at question due to unexplained deviations from the cation size trend. Our X-ray absorption spectroelectrochemical results show that bigger cations shift the Ni2+/(3+δ)+ redox peak and OER activity to lower potentials (however, with typical discrepancies), following the order CsOH > NaOH ≈ KOH > RbOH > LiOH. Here, we find that the OER activity follows the variations in electrolyte pH rather than a specific cation, which accounts for differences both in basicity of the alkali hydroxides and other contributing anomalies. Our density functional theory-derived reactivity descriptors confirm that cations impose negligible effect on the Lewis acidity of Ni, Fe, and O lattice sites, thus strengthening the conclusions of an indirect pH effect. It is commonly accepted that electrolyte alkali metal cations modify the catalytic activity for oxygen evolution reaction. Here the authors challenge this assumption, showing that the activity is actually affected by a change in the electrolyte pH rather than a specific alkali cation.
Collapse
|
14
|
Korsik M, Tse EG, Smith DG, Lewis W, Rutledge PJ, Todd MH. tele-Substitution Reactions in the Synthesis of a Promising Class of 1,2,4-Triazolo[4,3- a]pyrazine-Based Antimalarials. J Org Chem 2020; 85:13438-13452. [PMID: 32786609 DOI: 10.1021/acs.joc.0c01045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have discovered and studied a tele-substitution reaction in a biologically important heterocyclic ring system. Conditions that favor the tele-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base or the use of softer nucleophiles, less polar solvents, and larger halogens on the electrophile. Using results from X-ray crystallographic and isotope labeling experiments, a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the in vivo active antiplasmodium compounds of Series 4 of the Open Source Malaria consortium.
Collapse
Affiliation(s)
- Marat Korsik
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - David G Smith
- School of Health and Life Sciences, Federation University, Gippsland Campus, Churchill, VIC 3842, Australia
| | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Matthew H Todd
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| |
Collapse
|
15
|
Abstract
The question as to whether the F atom can engage in a halogen bond (XB) remains unsettled. This issue is addressed via density functional theory calculations which pair a wide range of organic and inorganic F-acids with various sorts of Lewis bases. From an energetic perspective, perfluorinated hydrocarbons with sp, sp2, or sp3 C-hybridization are unable to form an XB with an N-base, but a very weak bond can be formed if electron-withdrawing C≡N substituents are added to the acid. There is little improvement for inorganic acids O2NF, FOF, ClF, BrF, SiF4, or GeF4, but F2 is capable of a stronger XB of up to 5 kcal/mol. These results are consistent with a geometric criterion, which compares the intermolecular equilibrium distance with the sum of atomic van der Waals radii. The intensity of the σ-hole on the F atom has predictive value in that a Vs,max of at least 10-15 kcal/mol is required for XB formation. Adding a positive charge to the Lewis acid enhances the strength of any XB and even more so if the base is anionic. The acid-base interaction induces a contraction of the r(AF) covalent bond in the acid in most cases and a deshielding of the NMR signal of the F nucleus.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
16
|
Study of organic reactions using chemical reactivity descriptors derived through a temperature-dependent approach. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2557-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Inaoka S, Iwata K, Saha S. Towards the critical understanding of selected vibrational features in biologically important dicyano aromatic conjugated molecules: Importance of electron donating/withdrawal groups and geometry associated with dicyano group. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117419. [PMID: 31369992 DOI: 10.1016/j.saa.2019.117419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The Raman spectra of a series of synthesized DC molecules (benzylidene malononitrile derivatives) with different electron donating (EDG) and electron withdrawing (EWG) group have been presented and analyzed with DFT calculated spectra. In particular, different functional groups effect on cyano stretching (∼2200 cm-1), phenyl ring breathing and alkenic double bond stretch which often appears mixed up (1475-1650 cm-1) are studied systematically for several aromatic conjugated DC derivatives. Interestingly, symmetric stretching frequency of the DC compounds having two CN groups at geminal position appears at higher wavenumber (by 11-15 cm-1) compared to their corresponding asymmetric stretch frequency. Angle (between dicyano group) dependent theoretical study indicates that the relative appearance of cyano symmetric/anti-symmetric stretching frequency depends on whether dicyano groups are at the geminal or vicinal position and the angle between them. Complete band assignments of observed Raman frequencies have been performed by potential energy distributions (PEDs) available in GAR2PED software. Our results will help to understand the vibrational feature of this important class of compounds in biological medium when used as probe.
Collapse
Affiliation(s)
- Shun Inaoka
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Japan
| | - Koichi Iwata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Japan
| | - Satyen Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
18
|
Kriebel M, Hennemann M, Beierlein FR, Medina DD, Bein T, Clark T. Propagation of Holes and Electrons in Metal-Organic Frameworks. J Chem Inf Model 2019; 59:5057-5064. [PMID: 31722177 DOI: 10.1021/acs.jcim.9b00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge transport in two zinc metal-organic frameworks (MOFs) has been investigated using periodic semiempirical molecular orbital calculations with the AM1* Hamiltonian. Restricted Hartree-Fock calculations underestimate the band gap using Koopmans theorem (ca. 2 eV compared to the experimental value of 2.8 eV). However, it almost doubles when the constraint on the wave function to remain spin-restricted is removed and the energies of the UHF Natural Orbitals are used. Charge-transport simulations using propagation of the electron- or hole-density in imaginary time allow charge-transport paths and mechanisms to be determined. The calculated relative mobilities in the directions of the three crystal axes agree with experimental expectations, but the absolute values are not reliable using the current technique. Hole-mobility along the crystal c-axis (along the metal stacks) is found to be 13 times higher in the zinc MOF with anthracene linker (Zn-ANMOF-74) than in the other directions, whereas the factor is far smaller (1.7) for electron mobility. Directional preferences are far less distinct in the equivalent structure with phenyl linkers (Zn-MOF-74). The imaginary-time simulation technique does not give quantitative mobilities. The simulations reveal a change in mechanism between the different directions: Coherent polaron migration is observed along the stacks but tunneling hops between them.
Collapse
Affiliation(s)
- Maximilian Kriebel
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy , Friedrich-Alexander-University Erlangen-Nuremberg , Naegelsbachstr. 25 , 91052 Erlangen , Germany
| | - Matthias Hennemann
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy , Friedrich-Alexander-University Erlangen-Nuremberg , Naegelsbachstr. 25 , 91052 Erlangen , Germany
| | - Frank R Beierlein
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy , Friedrich-Alexander-University Erlangen-Nuremberg , Naegelsbachstr. 25 , 91052 Erlangen , Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS) , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS) , University of Munich (LMU) , Butenandtstraße 5-13 , 81377 Munich , Germany
| | - Timothy Clark
- Computer-Chemistry-Center, Department of Chemistry and Pharmacy , Friedrich-Alexander-University Erlangen-Nuremberg , Naegelsbachstr. 25 , 91052 Erlangen , Germany
| |
Collapse
|
19
|
Halldin Stenlid J, Johansson AJ, Brinck T. The local electron attachment energy and the electrostatic potential as descriptors of surface–adsorbate interactions. Phys Chem Chem Phys 2019; 21:17001-17009. [PMID: 31346592 DOI: 10.1039/c9cp03099a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Local DFT-based properties are used for fast rationalization and accurate estimations of local surface reactivity of metal and oxide compounds.
Collapse
Affiliation(s)
- Joakim Halldin Stenlid
- Applied Physical Chemistry
- Department of Chemistry
- CBH
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | | | - Tore Brinck
- Applied Physical Chemistry
- Department of Chemistry
- CBH
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| |
Collapse
|
20
|
Brinck T, Stenlid JH. The Molecular Surface Property Approach: A Guide to Chemical Interactions in Chemistry, Medicine, and Material Science. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tore Brinck
- Applied Physical ChemistryDepartment of ChemistryCBHKTH Royal Institute of Technology SE‐100 44 Stockholm Sweden
| | - Joakim H. Stenlid
- Department of PhysicsAlbaNova University CenterStockholm University SE‐106 91 Stockholm Sweden
| |
Collapse
|
21
|
Zierkiewicz W, Michalczyk M, Scheiner S. Regium bonds between M n clusters (M = Cu, Ag, Au and n = 2-6) and nucleophiles NH 3 and HCN. Phys Chem Chem Phys 2018; 20:22498-22509. [PMID: 30140798 DOI: 10.1039/c8cp03883j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most stable geometries of the coinage metal (or regium) atom (Cu, Ag, Au) clusters Mn for n up to 6 are all planar, and adopt the lowest possible spin multiplicity. Clusters with even numbers of M atoms are thus singlets, while those with odd n are open-shell doublets. Examination of the molecular electrostatic potential (MEP) of each cluster provides strong indications of the most likely site of attack by an approaching nucleophile, generally one of two positions. A nucleophile (NH3 or HCN) most favorably approaches one particular M atom of each cluster, rather than a bond midpoint or face. In the closed-shell clusters, the interaction energies are highly dependent upon the intensity of the MEP, but this correlation fades for the open-shell systems studied in this work. The strength of the interaction is also closely related to the basicity of the nucleophile. Regium bond energies can be more than 30 kcal mol-1 and tend to follow the Au > Cu > Ag order. These interaction energies are in large part derived from Coulombic attraction, with a smaller orbital interaction contribution.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | |
Collapse
|
22
|
Abstract
Electronegativity is a very useful concept but it is not a physical observable; it cannot be determined experimentally. Most practicing chemists view it as the electron-attracting power of an atom in a molecule. Various formulations of electronegativity have been proposed on this basis, and predictions made using different formulations generally agree reasonably well with each other and with chemical experience. A quite different approach, loosely linked to density functional theory, is based on a ground-state free atom or molecule, and equates electronegativity to the negative of an electronic chemical potential. A problem that is encountered with this approach is the differentiation of a noncontinuous function. We show that this approach leads to some results that are not chemically valid. A formulation of atomic electronegativity that does prove to be effective is to express it as the average local ionization energy on an outer contour of the atom's electronic density.
Collapse
|
23
|
Halldin Stenlid J, Johansson AJ, Brinck T. σ-Holes and σ-lumps direct the Lewis basic and acidic interactions of noble metal nanoparticles: introducing regium bonds. Phys Chem Chem Phys 2018; 20:2676-2692. [DOI: 10.1039/c7cp06259a] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using local DFT-based probes for electrostatic as well as charge transfer/polarization interactions, we are able to characterize Lewis basic and acidic sites on copper, silver and gold nanoparticles.
Collapse
Affiliation(s)
- Joakim Halldin Stenlid
- Applied Physical Chemistry
- School of Chemical Science and Engineering
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| | | | - Tore Brinck
- Applied Physical Chemistry
- School of Chemical Science and Engineering
- KTH Royal Institute of Technology
- Stockholm
- Sweden
| |
Collapse
|
24
|
Wu DE, Luo YH, Wang MN, Liu QL, Wen GJ, Zhu LJ, Fan CP, Sun BW. Effect of halogen bonding on supramolecular assembly and photophysical properties of diaryl oxalates. Struct Chem 2017. [DOI: 10.1007/s11224-017-0950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Kriebel M, Sharapa D, Clark T. Charge Transport in Organic Materials: Norm-Conserving Imaginary Time Propagation with Local Ionization Energy as the External Potential. J Chem Theory Comput 2017; 13:6308-6316. [PMID: 29048883 DOI: 10.1021/acs.jctc.7b00568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian Kriebel
- Computer-Chemie-Centrum and
Interdisciplinary Center for Molecular Materials, Department of Chemistry
and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Dmitry Sharapa
- Computer-Chemie-Centrum and
Interdisciplinary Center for Molecular Materials, Department of Chemistry
and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Timothy Clark
- Computer-Chemie-Centrum and
Interdisciplinary Center for Molecular Materials, Department of Chemistry
and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| |
Collapse
|
26
|
σ-Holes on Transition Metal Nanoclusters and Their Influence on the Local Lewis Acidity. CRYSTALS 2017. [DOI: 10.3390/cryst7070222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Stenlid JH, Brinck T. Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy. J Org Chem 2017; 82:3072-3083. [DOI: 10.1021/acs.joc.7b00059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joakim H. Stenlid
- Applied Physical Chemistry,
School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Tore Brinck
- Applied Physical Chemistry,
School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|