1
|
Bracher CE, Allen CJ, Singleton DA. Nuclear Quantum Effects on the Nature of Hydroboration Selectivity: Experimental Effects of First-Collision Tunneling. J Am Chem Soc 2024; 146:25907-25911. [PMID: 39284010 PMCID: PMC11440546 DOI: 10.1021/jacs.4c09306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The understanding of selectivity in reactions exhibiting nonstatistical dynamics is impeded by the limitations of trajectory studies with regard to nuclear quantum effects, especially tunneling. We described here the use of ring-polymer molecular dynamics (RPMD) to account for an unusual regiochemical isotope effect on the regioselectivity of hydroborations of alkenes with BH3/BD3. RPMD is able to account for the experimental observation, while statistical approaches and classical trajectories fail. The combination of experiment and RPMD trajectories suggests that tunneling in the initial collision of reactants is the major source of the nonstatistical selectivity.
Collapse
Affiliation(s)
- Christoph E Bracher
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Connor J Allen
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Daniel A Singleton
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
2
|
Liu Y, Li C, Voth GA. Generalized Transition State Theory Treatment of Water-Assisted Proton Transport Processes in Proteins. J Phys Chem B 2022; 126:10452-10459. [PMID: 36459423 PMCID: PMC9762399 DOI: 10.1021/acs.jpcb.2c06703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Transition state theory (TST) is widely employed for estimating the transition rate of a reaction when combined with free energy sampling techniques. A derivation of the transition theory rate expression for a general n-dimensional case is presented in this work which specifically focuses on water-assisted proton transfer/transport reactions, especially for protein systems. Our work evaluates the TST prefactor calculated at the transition state dividing surface compared to one sampled, as an approximation, in the reactant state in four case studies of water-assisted proton transport inside membrane proteins and highlights the significant impact of the prefactor position dependence in proton transport processes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| | - Chenghan Li
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
3
|
Liu N, Xie X, Li Q, Scheiner S. Enhancement of the Tetrel Bond by the Effects of Substituents, Cooperativity, and Electric Field: Transition from Noncovalent to Covalent Bond. Chemphyschem 2021; 22:2305-2312. [PMID: 34436816 DOI: 10.1002/cphc.202100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 12/14/2022]
Abstract
The T⋅⋅⋅N tetrel bond (TB) formed between TX3 OH (T=C, Si, Ge; X=H, F) and the Lewis base N≡CM (M=H, Li, Na) is studied by ab initio calculations at the MP2/aug-cc-pVTZ level. Complexes involving TH3 OH contain a conventional TB with interaction energy less than 10 kcal/mol. This bond is substantially strengthened, approaching 35 kcal/mol and covalent character, when fluorosubstituted TF3 OH is combined with NCLi or NCNa. Along with this enhanced binding comes a near equalization of the TB T⋅⋅⋅N and the internal T-O bond lengths, and the associated structure acquires a trigonal bipyramidal shape, despite a high internal deformation energy. This structural transformation becomes more complete, and the TB is further strengthened upon adding an electron acceptor BeCl2 to the Lewis acid and a base to the NCM unit. This same TB strengthening can be accomplished also by imposition of an external electric field.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xiaoying Xie
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
4
|
Bhowmick S, Hernández MI, Campos-Martínez J, Suleimanov YV. Isotopic separation of helium through graphyne membranes: a ring polymer molecular dynamics study. Phys Chem Chem Phys 2021; 23:18547-18557. [PMID: 34612392 DOI: 10.1039/d1cp02121d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microscopic-level understanding of the separation mechanism for two-dimensional (2D) membranes is an active area of research due to potential implications of this class of membranes for various technological processes. Helium (He) purification from the natural resources is of particular interest due to the shortfall in its production. In this work, we applied the ring polymer molecular dynamics (RPMD) method to graphdiyne (Gr2) and graphtriyne (Gr3) 2D membranes having variable pore sizes for the separation of He isotopes, and compare for the first time with rigorous quantum calculations. We found that the transmission rate through Gr3 is many orders of magnitude greater than Gr2. The selectivity of either isotope at low temperatures is a consequence of a delicate balance between the zero-point energy effect and tunneling of 4He and 3He. In particular, a remarkable tunneling effect is reported on the Gr2 membrane at 10 K, leading to a much larger permeation of the lighter species as compared to the heavier isotope. RPMD provides an efficient approach for studying the separation of He isotopes, taking into account quantum effects of light nuclei motions at low temperatures, which classical methods fail to capture.
Collapse
Affiliation(s)
- Somnath Bhowmick
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| | | | | | | |
Collapse
|
5
|
Adhikari A, Park WW, Kwon OH. Hydrogen-Bond Dynamics and Energetics of Biological Water. Chempluschem 2020; 85:2657-2665. [PMID: 33305536 DOI: 10.1002/cplu.202000744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/26/2020] [Indexed: 11/11/2022]
Abstract
Water molecules in the immediate vicinity of biomacromolecules and biomimetic organized assemblies often exhibit a markedly distinct behavior from that of their bulk counterparts. The overall sluggish behavior of biological water substantially affects the stability and integrity of biomolecules, as well as the successful execution of various crucial water-mediated biochemical phenomena. In this Minireview, insights are provided into the features of truncated hydrogen-bond networks that grant biological water its unique characteristics. In particular, experimental results and theoretical investigations, based on chemical kinetics, are presented that have shed light on the dynamics and energetics governing such characteristics. It is emphasized how such details help us to understand the energetics of biological water, an aspect relatively less explored than its dynamics. For instance, when biological water at hydrophilic or charged protein surfaces was explored, the free energy of H-bond breakage was found to be of the order of 0.4 kcal mol-1 higher than that of bulk water.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea.,Department of Physics, UNIST, 44919, Ulsan, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea
| | - Oh-Hoon Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 44919, Ulsan, Republic of Korea.,Center for Soft and Living Matter, Institute for Basic Science (IBS), 44919, Ulsan, Republic of Korea
| |
Collapse
|
6
|
Ju M, Cho OH, Lee J, Namgung SD, Song MK, Balamurugan M, Kwon JY, Nam KT. Quantitative analysis of the coupling between proton and electron transport in peptide/manganese oxide hybrid films. Phys Chem Chem Phys 2020; 22:7537-7545. [DOI: 10.1039/c9cp05581a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel platform is proposed to quantify the coupling phenomenon between electrons and protons in tyrosine-rich peptide/manganese oxide hybrid films at room temperature.
Collapse
Affiliation(s)
- Misong Ju
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Ouk Hyun Cho
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Jaehun Lee
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Seok Daniel Namgung
- School of Integrated Technology
- Yonsei University
- Incheon
- South Korea
- Yonsei Institute of Convergence Technology
| | - Min-Kyu Song
- School of Integrated Technology
- Yonsei University
- Incheon
- South Korea
- Yonsei Institute of Convergence Technology
| | - Mani Balamurugan
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| | - Jang-Yeon Kwon
- School of Integrated Technology
- Yonsei University
- Incheon
- South Korea
- Yonsei Institute of Convergence Technology
| | - Ki Tae Nam
- Department of Materials Science and Engineering
- Seoul National University
- Seoul
- South Korea
| |
Collapse
|
7
|
Theoretical study on excited-state multiple proton-transfer process of 7-azaindole with ammonia and mixed water-ammonia: Stepwise or concerted? J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Mazzuca JW, Haut NK. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes. J Chem Phys 2018; 148:224301. [PMID: 29907032 DOI: 10.1063/1.5027821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.
Collapse
Affiliation(s)
- James W Mazzuca
- Chemistry Department, Alma College, Alma, Michigan 48801, USA
| | | |
Collapse
|
9
|
Oostenrijk B, Walsh N, Laksman J, Månsson EP, Grunewald C, Sorensen SL, Gisselbrecht M. The role of charge and proton transfer in fragmentation of hydrogen-bonded nanosystems: the breakup of ammonia clusters upon single photon multi-ionization. Phys Chem Chem Phys 2018; 20:932-940. [PMID: 29230456 DOI: 10.1039/c7cp06688k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The charge and proton dynamics in hydrogen-bonded networks are investigated using ammonia as a model system. The fragmentation dynamics of medium-sized clusters (1-2 nm) upon single photon multi-ionization is studied, by analyzing the momenta of small ionic fragments. The observed fragmentation pattern of the doubly- and triply-charged clusters reveals a spatial anisotropy of emission between fragments (back-to-back). Protonated fragments exhibit a distinct kinematic correlation, indicating a delay between ionization and fragmentation (fission). The different kinematics observed for channels containing protonated and unprotonated species provides possible insights into the prime mechanisms of charge and proton transfer, as well as proton hopping, in such a nanoscale system.
Collapse
Affiliation(s)
- Bart Oostenrijk
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 22100 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|