1
|
Kong L, Zhou L, Chen D, Luo L, Xiao K, Chen Y, Liu H, Tan Q, Yang F. Atmospheric oxidation capacity and secondary pollutant formation potentials based on photochemical loss of VOCs in a megacity of the Sichuan Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166259. [PMID: 37595915 DOI: 10.1016/j.scitotenv.2023.166259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Volatile organic compounds (VOCs) are significant precursors to photochemical pollution. However, reactive VOC species are easily oxidized during transportation, resulting in a systematic underestimate of the measured concentrations. To address this, we applied an improved calculation method to correct the measured VOC concentrations into photochemical initial concentrations (PICs) in Chengdu, a megacity in the Sichuan Basin, China, which is highly vulnerable to complex pollution. In this study, 56 VOC species on the Photochemical Assessment Monitor Station (PAMS) target list were quantitatively monitored throughout all four seasons. Comparing to directly measured values, photochemically initialized total mixing ratios of VOCs increased by 18.6 % in general. The photochemical loss percentages of alkenes and aromatics were prominent in summer (68.6 %, 28.7 %) and spring (65.9 %, 24.7 %), respectively. Furthermore, we examined contributions of VOCs to atmospheric oxidation capacity (AOC) depending on PICs and found that maximum daily total AOC showed a surge in spring and summer. Besides hydroxyl radicals, daytime O3 in spring and late-afternoon nitrate radicals in summer were essential for AOC with PICs. As expected, alkenes and aromatics dominated PIC-based ozone formation potentials (OFPs). Furthermore, contribution of alkenes to secondary organic aerosol formation potentials reached 15.5 % and 7.6 % in spring and summer, respectively. Using positive matrix factorization model, we identified five VOC sources including vehicular exhaust, industrial emissions, solvent usage, biogenic sources, and liquefied petroleum gas/natural gas use. Based on PICs, biogenic sources were significantly underestimated in spring and summer. Meanwhile, m,p-xylene from solvent usage and isoprene from biogenic sources were the primary contributors to OFPs. Consequently, these results emphasize the significance of photochemically oxidized VOC concentrations, especially for reactive species in typical seasons.
Collapse
Affiliation(s)
- Lan Kong
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Li Zhou
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| | - Dongyang Chen
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Lan Luo
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Kuang Xiao
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yong Chen
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Fumo Yang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| |
Collapse
|
2
|
Ge M, Tong S, Wang W, Zhang W, Chen M, Peng C, Li J, Zhou L, Chen Y, Liu M. Important Oxidants and Their Impact on the Environmental Effects of Aerosols. J Phys Chem A 2021; 125:3813-3825. [PMID: 33687210 DOI: 10.1021/acs.jpca.0c10236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidants are central species in the atmosphere, where they not only determine secondary particle formation but also impact human health and climate change. In general, they are unstable, highly reactive, and recyclable and have been studied in field observations, laboratory studies, and model simulations. The most widely investigated oxidants, such as OH radicals, O3, and Cl atom, HONO, NO3, N2O5, and Criegee Intermediates (CIs) have attracted more attention recently. Furthermore, secondary particles formed in the oxidations processes impact the particle physicochemical properties, such as hygroscopicity and optical properties and therefore impact the atmospheric radiation balance. Therefore, the newest investigation results of important oxidants (HONO, NO3, N2O5, and CIs) are reviewed in this manuscript, and the environmental effects of secondary particles formed through corresponding oxidation processes are also stated. Furthermore, some perspectives are further discussed in the article.
Collapse
Affiliation(s)
- Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meifang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Chao Peng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li Zhou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,College of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Ren Y, McGillen M, Ouchen I, Daële V, Mellouki A. Kinetic and product studies of the reactions of NO 3 with a series of unsaturated organic compounds. J Environ Sci (China) 2020; 95:111-120. [PMID: 32653170 DOI: 10.1016/j.jes.2020.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Rate coefficients for the reaction of NO3 radicals with 6 unsaturated volatile organic compounds (VOCs) in a 7300 L simulation chamber at ambient temperature and pressure have been determined by the relative rate method. The resulting rate coefficients were determined for isoprene, 2-carene, 3-carene, methyl vinyl ketone (MVK), methacrolein (MACR) and crotonaldehyde (CA), as (6.6 ± 0.8) × 10-13, (1.8 ± 0.6) × 10-11, (8.7 ± 0.5) × 10-12, (1.24 ± 1.04) × 10-16, (3.3 ± 0.9) × 10-15 and (5.7 ± 1.2) × 10-15 cm3/(molecule•sec), respectively. The experiments indicate that NO3 radical reactions with all the studied unsaturated VOCs proceed through addition to the olefinic bond, however, it indicates that the introduction of a carbonyl group into unsaturated VOCs can deactivate the neighboring olefinic bond towards reaction with the NO3 radical, which is to be expected since the presence of these electron-withdrawing substituents will reduce the electron density in the π orbitals of the alkenes, and will therefore reduce the rate coefficient of these electrophilic addition reactions. In addition, we investigated the product formation from the reactions of 2-carene and 3-carene with the NO3 radical. Qualitative identification of an epoxide (C10H16OH+), caronaldehyde (C10H16O2H+) and nitrooxy-ketone (C10H16O4NH+) was achieved using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yangang Ren
- Centre National de la Recherche Scientifique (CNRS) (UPR 3021), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Orléans 45071, France
| | - Max McGillen
- Centre National de la Recherche Scientifique (CNRS) (UPR 3021), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Orléans 45071, France; Le Studium Loire Valley Institute for Advanced Studies, Orléans 45071, France
| | - Ibrahim Ouchen
- Earth Sciences Department, Scientific Institute, Mohammed V University, Rabat 10106, Morocco
| | - Veronique Daële
- Centre National de la Recherche Scientifique (CNRS) (UPR 3021), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Orléans 45071, France
| | - Abdelwahid Mellouki
- Centre National de la Recherche Scientifique (CNRS) (UPR 3021), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), Orléans 45071, France.
| |
Collapse
|
4
|
Geiger FM, McNeill VF, Orr-Ewing AJ. Virtual Issue in Atmospheric Chemistry Research. J Phys Chem A 2020; 124:5697-5699. [PMID: 32668907 DOI: 10.1021/acs.jpca.0c05353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
5
|
Fan C, Wang W, Shi B, Chen Y, Wang K, Zhang W, Sun Z, Ge M. A Combined Experimental and Theoretical Study on the Gas Phase Reaction of OH Radicals with Ethyl Propyl Ether. J Phys Chem A 2020; 124:721-730. [PMID: 31917920 DOI: 10.1021/acs.jpca.9b10742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of ethyl propyl ether (EnPE) with OH radicals was studied using proton-transfer-reaction mass spectrum (PTR-MS), and the rate constant was measured at 298 K and atmospheric pressure using the relative rate method: kexp(OH+EnPE) = (1.13 ± 0.09) × 10-11 cm3 molecules-1 s-1. In addition, a parallel theoretical study was performed using the traditional transition state theory (TST) with a tunnelling effect correction in combination at M05-2X method with two basis sets, 6-311++G(d,p) and aug-cc-pVTZ. According to these calculations, H atom abstraction occurs more favorably from the methylene group adjacent to the -O- bond than from the other groups. The theoretical calculation of the total rate constant of the reaction of EnPE with OH radicals was consistent with the experimental values. The gas-phase products indicated that the major products observed were ethyl formate, ethyl propionate, propionic acid. Combined with the experimental and theoretical results, the possible reaction mechanisms were proposed and discussed. The atmospheric implications of the studied reaction are presented, and the lifetime of EnPE in the presence of OH radicals was evaluated to be approximately 1 day.
Collapse
Affiliation(s)
- Cici Fan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,College of Chemistry and Material Science , Hebei Normal University , Shijiazhuang 050024 , China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Bo Shi
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,College of Chemistry and Material Science , Hebei Normal University , Shijiazhuang 050024 , China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zheng Sun
- College of Chemistry and Material Science , Hebei Normal University , Shijiazhuang 050024 , China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China.,Center for Excellence in Region¶al Atmospheric Environment , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen , 361021 , P. R. China
| |
Collapse
|
6
|
Zhou L, Ravishankara AR, Brown SS, Zarzana KJ, Idir M, Daële V, Mellouki A. Kinetics of the reactions of NO3 radical with alkanes. Phys Chem Chem Phys 2019; 21:4246-4257. [DOI: 10.1039/c8cp07675h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate coefficients for the reactions of NO3 radicals with methane (CH4), ethane (C2H6), propane (C3H8), n-butane (n-C4H10), iso-butane (iso-C4H10), 2,3-dimethylbutane (C6H14), cyclopentane (C5H10) and cyclohexane (C6H12) at atmosphere pressure (1000 ± 5 hPa) and room temperature (298 ± 1.5 K) were measured using an absolute method.
Collapse
Affiliation(s)
- Li Zhou
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - A. R. Ravishankara
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Steven S. Brown
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division
- Boulder
- USA
- Department of Chemistry
- University of Colorado Boulder
| | - Kyle J. Zarzana
- NOAA Earth System Research Laboratory (ESRL) Chemical Sciences Division
- Boulder
- USA
- Cooperative Institute for Research in Environmental Sciences
- University of Colorado Boulder
| | - Mahmoud Idir
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Véronique Daële
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Abdelwahid Mellouki
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| |
Collapse
|
7
|
Ravishankara AR, Pele AL, Zhou L, Ren Y, Zogka A, Daële V, Idir M, Brown SS, Romanias MN, Mellouki A. Atmospheric loss of nitrous oxide (N2O) is not influenced by its potential reactions with OH and NO3radicals. Phys Chem Chem Phys 2019; 21:24592-24600. [DOI: 10.1039/c9cp04818a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate coefficient for the possible reaction of OH and NO3radical with N2O are shown to be, respectively, <1 × 10−17and <5 × 10−20cm3molecule−1s−1. They are too low to contribute significantly to the atmospheric removal of N2O.
Collapse
Affiliation(s)
- A. R. Ravishankara
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Anne-Laure Pele
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Li Zhou
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Yangang Ren
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Antonia Zogka
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Véronique Daële
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Mahmoud Idir
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| | - Steven S. Brown
- National Oceanic and Atmospheric Administration
- Earth System Research Laboratory
- Chemical Sciences Division
- Boulder
- USA
| | | | - Abdelwahid Mellouki
- Institut de Combustion
- Aérothermique
- Réactivité et Environnement/OSUC
- CNRS
- 45071 Orléans Cedex 02
| |
Collapse
|
8
|
Chu H, Wu W, Shao Y, Tang Y, Zhang Y, Cheng Y, Chen F, Liu J, Sun J. A quantum theory investigation on atmospheric oxidation mechanisms of acrylic acid by OH radical and its implication for atmospheric chemistry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24939-24950. [PMID: 29931646 DOI: 10.1007/s11356-018-2561-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
The hydroxyl radical, as the most important oxidant, controls the removal of some volatile organic compounds (VOCs) in the atmosphere. In this work, the atmospheric oxidation processes of acrylic acid by OH radical have been investigated by density functional theory (DFT). The energetic routes of the reaction of CH2CHCOOH with OH radical have been calculated accurately at the CCSD(T)/cc-pVTZ//M06-2X/6-311++G(d,p) level. It is implicated that the oxidation has five elementary reaction pathways mostly hinging on how hydroxyl radical approaches to the carbon skeleton of acrylic acid. The atmospheric degradation mechanisms of the CH2CHCOOH by OH radical are the formation of reactive intermediates IM1 and IM2. Meanwhile, the further oxidation mechanisms of IM1 and IM2 by O3 and NO are also investigated. The rate coefficients have been computed using tight transition state theory of the variflex code. The calculated rate coefficient is 2.3 × 10-11 cm3 molecule-1 s-1 at standard pressure and 298 K, which is very close to the laboratory data (1.75 ± 0.47 × 10-11 cm3 molecule-1 s-1). Moreover, the atmospheric lifetime of acrylic acid is about 6 h at 298 K and 1 atm, implying that the fast sinks of acrylic acid by hydroxyl radical.
Collapse
Affiliation(s)
- Han Chu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Wenzhong Wu
- College of Foreign Languages, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Youxiang Shao
- School of Materials Science and Engineering, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yizhen Tang
- School of Environmental and municipal Engineering, Qingdao Technological University, Fushun Road 11, Qingdao, Shandong, 266033, People's Republic of China
| | - Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, Mianyang Normal University, Mianyang, 621000, People's Republic of China
| | - Yinfang Cheng
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Fang Chen
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Jiangyan Liu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China
| | - Jingyu Sun
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, People's Republic of China.
| |
Collapse
|
9
|
Zhu J, Tsona NT, Du L. Kinetics of atmospheric reactions of 4-chloro-1-butene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24241-24252. [PMID: 29948707 DOI: 10.1007/s11356-018-2504-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Chloroalkenes are among the important anthropogenic organic compounds emitted in the atmosphere as a result of their wide use in synthetic processes in industry. Despite their well-known adverse effects on human health and air quality, the chemistry of these chloroalkenes remains poorly explored. In this work, reactions of 4-chloro-1-butene (CBE), a representative example of chloroalkenes, with O3, OH, NO3, and Cl are investigated in a 100-L Teflon reaction chamber equipped with gas chromatography-flame ionization detector (GC-FID). The absolute rate method was used for the reaction with O3 while the relative rate method was used for reactions with OH, NO3, and Cl. The following rate constants were obtained at room temperature (298 ± 2) K and atmospheric pressure: (3.96 ± 0.43) × 10-18, (2.63 ± 0.96) × 10-11, (4.48 ± 1.23) × 10-15, and (2.35 ± 0.90) × 10-10 cm3 molecule-1 s-1, for reactions with O3, OH, NO3, and Cl, respectively. Atmospheric lifetimes of CBE calculated from rate constants of the different reactions obtained in this work showed that reaction with OH is the main loss process for CBE, while in coastal areas and in the marine boundary layer, the CBE loss by Cl reaction becomes important. Estimation of the value of the photochemical ozone creation potential (POCP) indicated that CBE has a large ozone formation potential. The present work underlines the need for further studies on the atmospheric chemistry of chlorinated VOCs.
Collapse
Affiliation(s)
- Jianqiang Zhu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| |
Collapse
|
10
|
Wang S, Du L, Zhu J, Tsona NT, Liu S, Wang Y, Ge M, Wang W. Gas-Phase Oxidation of Allyl Acetate by O 3, OH, Cl, and NO 3: Reaction Kinetics and Mechanism. J Phys Chem A 2018; 122:1600-1611. [PMID: 29388423 DOI: 10.1021/acs.jpca.7b10599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allyl acetate (AA) is widely used as monomer and intermediate in industrial chemicals synthesis. To evaluate the atmospheric outcome of AA, kinetics and mechanism of its gas-phase reaction with main atmospheric oxidants (O3, OH, Cl, and NO3) have been investigated in a Teflon reactor at 298 ± 3 K. Both absolute and relative rate methods were used to determine the rate constants for AA reactions with the four atmospheric oxidants. The obtained rate constants (in units of cm3 molecule-1 s-1) are (1.8 ± 0.3) × 10-18, (3.1 ± 0.7) × 10-11, (2.5 ± 0.5) × 10-10, and (1.1 ± 0.4) × 10-14, for reactions with O3, OH, Cl, and NO3, respectively. While results for reactions with O3, OH and Cl are in good agreement with previous studies, the kinetics for the reaction with NO3 is reported for the first time in this study. On the basis of determined rate constants, the tropospheric lifetimes of AA are τO3 = 9 days, τOH = 5 h, τCl = 5 days, τNO3 = 2 days. On the basis of the products study, reaction mechanisms for these oxidations have been proposed and the reaction products were detected using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) and Fourier transform infrared spectroscopy (FTIR). Results show that the main products formed in these reactions are carbonyl compounds. In particular, 2-oxoethyl acetate was detected in all four AA oxidation reactions. Compared to previous studies, several new products were determined for reactions with OH and Cl. These results form a set of comprehensive kinetic data for AA reactions with main atmospheric oxidants and provide a better understanding of the degradation and atmospheric outcome of unsaturated acetate esters in the troposphere, during both daytime and nighttime.
Collapse
Affiliation(s)
- Shuyan Wang
- Environment Research Institute, Shandong University , Jinan 250100, China
| | - Lin Du
- Environment Research Institute, Shandong University , Jinan 250100, China
| | - Jianqiang Zhu
- Environment Research Institute, Shandong University , Jinan 250100, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University , Jinan 250100, China
| | - Shijie Liu
- Environment Research Institute, Shandong University , Jinan 250100, China
| | - Yifeng Wang
- Key Lab of Colloid and Interface Science of the Education Ministry, Department of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, China
| | - Maofa Ge
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University , Jinan 250100, China
| |
Collapse
|
11
|
Zhu J, Wang S, Tsona NT, Jiang X, Wang Y, Ge M, Du L. Gas-Phase Reaction of Methyl n-Propyl Ether with OH, NO3, and Cl: Kinetics and Mechanism. J Phys Chem A 2017; 121:6800-6809. [DOI: 10.1021/acs.jpca.7b06877] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianqiang Zhu
- Environment
Research Institute, Shandong University, Ji’nan 250100, China
- Shenzhen
Research Institute, Shandong University, Shenzhen 518057, China
| | - Shuyan Wang
- Environment
Research Institute, Shandong University, Ji’nan 250100, China
| | - Narcisse T. Tsona
- Environment
Research Institute, Shandong University, Ji’nan 250100, China
| | - Xiaotong Jiang
- Environment
Research Institute, Shandong University, Ji’nan 250100, China
| | - Yifeng Wang
- Key Lab of Colloid
and Interface Science of the Education Ministry, Department
of Chemistry and Chemical Engineering, Shandong University, Ji’nan 250100, China
| | - Maofa Ge
- Beijing
National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory
for Structural Chemistry of Unstable and Stable Species, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Du
- Environment
Research Institute, Shandong University, Ji’nan 250100, China
- Shenzhen
Research Institute, Shandong University, Shenzhen 518057, China
| |
Collapse
|