1
|
Berardi AJ, Raymond JE, Chang A, Mauser AK, Lahann J. Self-Reporting Therapeutic Protein Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43350-43363. [PMID: 39106360 DOI: 10.1021/acsami.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
We present a modular strategy to synthesize nanoparticle sensors equipped with dithiomaleimide-based, fluorescent molecular reporters capable of discerning minute changes in interparticle chemical environments based on fluorescence lifetime analysis. Three types of nanoparticles were synthesized with the aid of tailor-made molecular reporters, and it was found that protein nanoparticles exhibited greater sensitivity to changes in the core environment than polymer nanogels and block copolymer micelles. Encapsulation of the hydrophobic small-molecule drug paclitaxel (PTX) in self-reporting protein nanoparticles induced characteristic changes in fluorescence lifetime profiles, detected via time-resolved fluorescence spectroscopy. Depending on the mode of drug encapsulation, self-reporting protein nanoparticles revealed pronounced differences in their fluorescence lifetime signatures, which correlated with burst- vs diffusion-controlled release profiles observed in previous reports. Self-reporting nanoparticles, such as the ones developed here, will be critical for unraveling nanoparticle stability and nanoparticle-drug interactions, informing the future development of rationally engineered nanoparticle-based drug carriers.
Collapse
Affiliation(s)
- Anthony J Berardi
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48105, United States
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
| | - Jeffery E Raymond
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Center for Complex Particle Systems, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Albert Chang
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Ava K Mauser
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Joerg Lahann
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48105, United States
- Biointerfaces Institute, Ann Arbor, Michigan 48105, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
2
|
Taheri E, Jafarpour F. Developing a straightforward route toward the synthesis of arylaminomaleimides by palladium-catalyzed arylation of one-pot synthesized aminomaleimides. Org Biomol Chem 2023; 22:169-174. [PMID: 38051284 DOI: 10.1039/d3ob01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
3-Aryl-4-aminomaleimides have well-demonstrated applications, such as being used as fluorophores and inhibitors. However, their previous synthesis methods have involved tedious multi-step procedures or methods that need pre-functionalized maleimides and toxic or unstable reagents. Here, a feasible method is developed to synthesize these useful compounds. This includes the one-pot preparation of 3-aminomaleimides, followed by their direct arylation through a palladium-catalyzed Heck reaction with various aryl iodides regioselectively at the β-position of their amine substituents. The results show that this method efficiently exhibits a broad scope.
Collapse
Affiliation(s)
- Elmira Taheri
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
3
|
Gao Q, Luo L, Chen C, Wen K, Zhu Z, Tang X. Transition-Metal-Free Base-Promoted Deaminative Coupling of Gramines with Aminomaleimides. J Org Chem 2023; 88:13303-13314. [PMID: 37668535 DOI: 10.1021/acs.joc.3c01610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The direct utilization of amines for C-C bond formation without prefunctionalization remains a significant challenge. Herein, we report the base-promoted deaminative coupling of gramines with aminomalaimides under redox-neutral conditions. In this operationally simple reaction, a series of indolmethyl-substituted aminomaleimides that emitted fluorescence were synthesized in good-to-excellent yields. Biological evaluation revealed that some products exhibited antiproliferative activity against human cancer cell lines.
Collapse
Affiliation(s)
- Qiwen Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| | - Liuting Luo
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu district, Guangzhou 510315, China
| | - Chen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| | - Zhibo Zhu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13# Shiliugang Road, Haizhu district, Guangzhou 510315, China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
4
|
Wang D, Shao TF, Ding WH, Li SJ, Yao Q, Cao W, Wang Z, Ma Y. AIE -active TPA modified Schiff base for successive sensing of Cu 2+ and His via an on-off-on method and its application in bioimaging. Dalton Trans 2023; 52:434-443. [PMID: 36524392 DOI: 10.1039/d2dt03457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, a novel triphenylamine-modified salicylaldehyde Schiff base 2-(((4-(diphenylamino)phenyl)imino)methyl)-4-(pyridine-4-yl)phenol (HL) was synthesized and structurally characterized. HL possessed D-π-A structure and exhibited typical AIE property in THF/H2O. It was applied to selectively recognize Cu2+ through an on-off mode in THF/H2O (1/9, v/v), and the fluorescence attenuation was attributed to a paramagnetic quenching effect of Cu2+ together with the abatement of HL aggregates. Hence, the detection limit achieved was as low as 1.32 × 10-7 M. The spectroscopic and ESI-HRMS results revealed a 1 : 2 complexation ratio of Cu2+ with HL. The mechanism for sensing Cu2+ was further confirmed by performing DFT calculations. Owing to the large affinity between Cu2+ and His, the resultant CuL2 system was further used to detect His via the off-on method based on the displacement of ligands. The detection limit for His reached 5.14 × 10-8 M. Furthermore, HL was available to prepare handy indicator papers for the on-site recognition of Cu2+ and His. Confocal fluorescent imaging demonstrated that HL could sequentially respond to intracellular Cu2+ and His.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| | - Tian-Fen Shao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| | - Wei-Hua Ding
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Shao-Jie Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| | - Qi Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| | - Wei Cao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Zheng Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| |
Collapse
|
5
|
Pervez M, Pearce AK, Husband JT, Male L, Torrent‐Sucarrat M, O'Reilly RK. Enhancing Dual-State Emission in Maleimide Fluorophores through Fluorocarbon Functionalisation. Chemistry 2022; 28:e202201877. [PMID: 35857384 PMCID: PMC9804613 DOI: 10.1002/chem.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 01/05/2023]
Abstract
Herein, a library of trifluoroethyl substituted aminomaleimide derivatives are reported with small size and enhanced emissions in both solution and solid-state. A diCH2 CF3 substituted aminochloromaleimide exhibits the most efficient dual-state emission (Φf >50 % in solution and solid-state), with reduced quenching from protic solvents. This is attributed to the reduction of electron density on the maleimide ring and suppressed π-π stacking in the solid-state. This mechanism was explored in-depth by crystallographic analysis, and modelling of the electronic distribution of HOMO-LUMO isosurfaces and NCI plots. Hence, these dual-state dyes overcome the limitations of single-state luminescence and will serve as an important step forward for this rapidly developing nascent field.
Collapse
Affiliation(s)
- Maria Pervez
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Amanda K. Pearce
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Jonathan T. Husband
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Louise Male
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| | - Miquel Torrent‐Sucarrat
- Department of Organic Chemistry IUniversidad del País Vasco (UPV/EHU) and Donostia International Physics Center (DIPC)Manuel Lardizabal Ibilbidea 3Donostia20018Spain
- IkerbasqueBasque Foundation for SciencePlaza Euskadi, 5Bilbao48009Spain
| | - Rachel K. O'Reilly
- School of ChemistryUniversity of Birmingham EdgbastonBirminghamB15 2TTUnited Kingdom
| |
Collapse
|
6
|
Wang D, Li SJ, Cao W, Wang Z, Ma Y. ESIPT-Active 8-Hydroxyquinoline-Based Fluorescence Sensor for Zn(II) Detection and Aggregation-Induced Emission of the Zn(II) Complex. ACS OMEGA 2022; 7:18017-18026. [PMID: 35664592 PMCID: PMC9161411 DOI: 10.1021/acsomega.2c01414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
A D-π-A type quinoline derivative, 2-(((4-(1, 2, 2-triphenylvinyl)phenyl)imino)methyl)quinolin-8-ol (HL), was synthesized and structurally characterized. The five-membered ring formed by the O-H···N hydrogen bond in HL contributed to the excited-state intramolecular proton transfer (ESIPT) behavior of HL, which was further verified by theoretical computations. Upon coordination with Zn2+, the hydroxyl proton in HL was removed, resulting in the inhibition of ESIPT. In the meanwhile, the formed Zn 2 L 4 complex displayed aggregation-induced emission (AIE) character in THF/H2O mixtures, which is conducive to the fluorescence enhancement in aqueous media. Structure analysis suggested that the origin of the AIE characteristic was attributed to restriction of intramolecular rotations along with the formation of J-aggregates. Based on ESIPT coupled with AIE, HL could recognize Zn(II) in aqueous media via an orange fluorescence turn-on mode. Benefitting from the AIE property, chemosensor HL was successfully applied to fabricate test strips for rapid sensing of Zn(II) ions.
Collapse
Affiliation(s)
- Dan Wang
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| | - Shao-Jie Li
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| | - Wei Cao
- Scientific
Instrument Center, Shanxi University, Taiyuan 030006, People’s Republic of China
| | - Zheng Wang
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| | - Yangmin Ma
- Key
Laboratory of Chemical Additives for China National Light Industry,
College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, People’s Republic of China
| |
Collapse
|
7
|
Richings GW, Habershon S. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations. Acc Chem Res 2022; 55:209-220. [PMID: 34982533 DOI: 10.1021/acs.accounts.1c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The processes which occur after molecules absorb light underpin an enormous range of fundamental technologies and applications, including photocatalysis to enable new chemical transformations, sunscreens to protect against the harmful effects of UV overexposure, efficient photovoltaics for energy generation from sunlight, and fluorescent probes to image the intricate details of complex biomolecular structures. Reflecting this broad range of applications, an enormously versatile set of experiments are now regularly used to interrogate light-driven chemical dynamics, ranging from the typical ultrafast transient absorption spectroscopy used in many university laboratories to the inspiring central facilities around the world, such as the next-generation of X-ray free-electron lasers.Computer simulations of light-driven molecular and material dynamics are an essential route to analyzing the enormous amount of transient electronic and structural data produced by these experimental sources. However, to date, the direct simulation of molecular photochemistry remains a frontier challenge in computational chemical science, simultaneously demanding the accurate treatment of molecular electronic structure, nuclear dynamics, and the impact of nonadiabatic couplings.To address these important challenges and to enable new computational methods which can be integrated with state-of-the-art experimental capabilities, the past few years have seen a burst of activity in the development of "direct" quantum dynamics methods, merging the machine learning of potential energy surfaces (PESs) and nonadiabatic couplings with accurate quantum propagation schemes such as the multiconfiguration time-dependent Hartree (MCTDH) method. The result of this approach is a new generation of direct quantum dynamics tools in which PESs are generated in tandem with wave function propagation, enabling accurate "on-the-fly" simulations of molecular photochemistry. These simulations offer an alternative route toward gaining quantum dynamics insights, circumventing the challenge of generating ab initio electronic structure data for PES fitting by instead only demanding expensive energy evaluations as and when they are needed.In this Account, we describe the chronological evolution of our own contributions to this field, focusing on describing the algorithmic developments that enable direct MCTDH simulations for complex molecular systems moving on multiple coupled electronic states. Specifically, we highlight active learning strategies for generating PESs during grid-based quantum chemical dynamics simulations, and we discuss the development and impact of novel diabatization schemes to enable direct grid-based simulations of photochemical dynamics; these developments are highlighted in a series of benchmark molecular simulations of systems containing multiple nuclear degrees of freedom moving on multiple coupled electronic states. We hope that the ongoing developments reported here represent a major step forward in tools for modeling excited-state chemistry such as photodissociation, proton and electron transfer, and ultrafast energy dissipation in complex molecular systems.
Collapse
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry, University of Warwick, Coventry, United Kingdom CV4 7AL
| | - Scott Habershon
- Department of Chemistry, University of Warwick, Coventry, United Kingdom CV4 7AL
| |
Collapse
|
8
|
Sikder A, Xie Y, Thomas M, Derry MJ, O'Reilly RK. Precise control over supramolecular nanostructures via manipulation of H-bonding in π-amphiphiles. NANOSCALE 2021; 13:20111-20118. [PMID: 34846491 DOI: 10.1039/d1nr04882a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled supramolecular architectures are ubiquitous in nature. A synchronized combination of dynamic noncovalent interactions is the major driving force in forming unique structures with high-precision control over the self-assembly of supramolecular materials. Herein, we have achieved programmable nanostructures by introducing single/multiple H-bonding units in a supramolecular building block. A diverse range of nanostructures can be generated in aqueous medium by subtly tuning the structure of π-amphiphiles. 1D-cylindrical micelles, 2D-nanoribbons and hollow nanotubes are produced by systematically varying the number of H-bonding units (0-2) in structurally near identical π-amphiphiles. Spectroscopic measurements revealed the decisive role of H-bonding units for different modes of molecular packing. We have demonstrated that a competitive self-assembled state (a kinetically controlled aggregation state and a thermodynamically controlled aggregation state) can be generated by fine tuning the number of noncovalent forces present in the supramolecular building blocks. The luminescence properties of conjugated dithiomaleimide (DTM) provided insight into the relative hydrophobicity of the core in these nanostructures. In addition, fluorescence turn-off in the presence of thiophenol enabled us to probe the accessibility of the hydrophobic core in these assembled systems toward guest molecules. Therefore the DTM group provides an efficient tool to determine the relative hydrophobicity and accessibility of the core of various nanostructures which is very rarely studied in supramolecular assemblies.
Collapse
Affiliation(s)
- Amrita Sikder
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Marjolaine Thomas
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Matthew J Derry
- Aston Institute of Materials Research, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| |
Collapse
|
9
|
Husband JT, Xie Y, Wilks TR, Male L, Torrent-Sucarrat M, Stavros VG, O'Reilly RK. Rigidochromism by imide functionalisation of an aminomaleimide fluorophore. Chem Sci 2021; 12:10550-10557. [PMID: 34447549 PMCID: PMC8356812 DOI: 10.1039/d1sc03307g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescent dyes that exhibit high solid state quantum yields and sensitivity to the mechanical properties of their local environment are useful for a wide variety of applications, but are limited in chemical diversity. We report a trityl-functionalised maleimide that displays rigidochromic behaviour, becoming highly fluorescent when immobilised in a solid matrix, while displaying negligible fluorescence in solution. Furthermore, the dye's quantum yield is shown to be sensitive to the nature of the surrounding matrix. Computational studies reveal that this behaviour arises from the precise tuning of inter- and intramolecular noncovalent interactions. This work expands the diversity of molecules exhibiting solid state environment sensitivity, and provides important fundamental insights into their design.
Collapse
Affiliation(s)
- Jonathan T Husband
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Universidad del País Vasco (UPV/EHU), Donostia International Physics Center (DIPC) Manuel Lardizabal Ibilbidea 3 Donostia 20018 Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Euskadi Spain
| | | | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
10
|
Wu M, Yang DD, Zheng HW, Liang QF, Li JB, Kang Y, Li S, Jiao C, Zheng XJ, Jin LP. A multi-binding site hydrazone-based chemosensor for Zn(ii) and Cd(ii): a new strategy for the detection of metal ions in aqueous media based on aggregation-induced emission. Dalton Trans 2021; 50:1507-1513. [PMID: 33443271 DOI: 10.1039/d0dt04062b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A multi-binding site chemosensor, N-(3-methoxy-2-hydroxybenzylidene)-3-hydroxy-2-naphthahydrazone (H3L), with excited-state intramolecular proton transfer (ESIPT) behaviour was prepared and characterized. It possesses no aggregation-induced emission (AIE) characteristics but can detect Cd2+ and Zn2+ ions selectively in the "off-on" mode based on the AIE of their complexes in the media of THF/HEPES and THF/H2O, respectively, which will provide a new strategy for target detection based on AIE. The detection limits of Zn2+ and Cd2+ were 9.85 × 10-9 M and 1.27 × 10-7 M, respectively. The aggregates of the complexes formed in the detection system were confirmed by DLS data and SEM images. The corresponding Zn2+ (1) and Cd2+ (2) complexes were prepared to investigate the response mechanism. Powder X-ray diffraction and single crystal X-ray diffraction proved that complex 1 is the species formed in the detection system. The chemosensor coordinates with the Cd2+ and Zn2+ ions in different formation and coordination modes, leading to the emission position of the aggregates at 560 and 645 nm, respectively, based on which Cd2+ ions were successfully differentiated from Zn2+ ions. Moreover, the detection of Cd2+ and Zn2+ ions was realized qualitatively via test paper and quantitatively in water.
Collapse
Affiliation(s)
- Min Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Jia-Bin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yang Kang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Sai Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Chen Jiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Lin-Pei Jin
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
11
|
Guo Y, Yao L, Luo L, Wang HX, Yang Z, Wang Z, Ai SL, Zhang Y, Zou QC, Zhang HL. Alkylaminomaleimide fluorophores: synthesis via air oxidation and emission modulation by twisted intramolecular charge transfer. Org Chem Front 2021. [DOI: 10.1039/d0qo01285h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel strategy to synthesize 3-alkylaminomaleimide fluorophores via air oxidation is developed, and the structural features for the designed TICT fluorophores with bright emission are established.
Collapse
|
12
|
Jimaja S, Xie Y, Foster JC, Taton D, Dove AP, O'Reilly RK. Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers. Polym Chem 2021. [DOI: 10.1039/d0py00791a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nickel-catalysed coordination polymerisation-induced self-assembly (NiCCo-PISA) as a straightforward and versatile methodology to achieve functional helix-containing polymeric nano-objects.
Collapse
Affiliation(s)
- Sètuhn Jimaja
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- School of Chemistry
| | - Yujie Xie
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- School of Chemistry
| | | | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques
- Université de Bordeaux/CNRS École Nationale Supérieure de Chimie
- de Biologie & de Physique
- 33607 Cedex Pessac
- France
| | - Andrew P. Dove
- School of Chemistry
- University of Birmingham
- Edgbaston B15 2TT
- UK
| | | |
Collapse
|
13
|
Sandoval-Torrientes R, Carr T, De Bo G. A Mechanochromic Hydrogen-Bonded Rotaxane. Macromol Rapid Commun 2020; 42:e2000447. [PMID: 33043523 DOI: 10.1002/marc.202000447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
Tensile forces influence a variety of important biological processes and force sensors are required to study these processes in vivo. Current force sensors are often tailor-made for a specific application, or activate at much higher forces than those observed at the cellular or tissue level. A versatile force sensor, with tunable mechanical and optical properties, activated at low pN forces will be ideal. In this communication, a new mechanoresponsive fluorescent hydrogen-bonded rotaxane, built around a maleimide dye, is reported. Its force-sensing properties are demonstrated in a polyacrylamide gel, a synthetic model of living tissue.
Collapse
Affiliation(s)
| | - ThomasR Carr
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
14
|
Li S, Wu M, Kang Y, Zheng HW, Zheng XJ, Fang DC, Jin LP. Grinding-Triggered Single Crystal-to-Single Crystal Transformation of a Zinc(II) Complex: Mechanochromic Luminescence and Aggregation-Induced Emission Properties. Inorg Chem 2019; 58:4626-4633. [DOI: 10.1021/acs.inorgchem.9b00195] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sai Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Min Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yang Kang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin-Pei Jin
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Woolley JM, Krokidi KM, Turner MAP, Horbury MD, Stavros VG, Rodrigues NDN. Highlights from Faraday Discussion on Ultrafast Photoinduced Energy and Charge Transfer, Ventura, CA, USA, April 2019. Chem Commun (Camb) 2019; 55:9232-9240. [DOI: 10.1039/c9cc90297j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Faraday Discussion meeting was held on the topic of ‘Ultrafast Energy and Charge Transfer’. This report covers the highlights of this meeting, including brief summaries of the papers discussed and particularly interesting or recurring topics of the ensuing discussion.
Collapse
Affiliation(s)
- J. M. Woolley
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | - K. M. Krokidi
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | - M. A. P. Turner
- University of Warwick
- Department of Chemistry
- Coventry
- UK
- University of Warwick
| | - M. D. Horbury
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | - V. G. Stavros
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | | |
Collapse
|
16
|
Ren TB, Xu W, Zhang QL, Zhang XX, Wen SY, Yi HB, Yuan L, Zhang XB. Enhancing the Anti-Solvatochromic Two-Photon Fluorescence for Cirrhosis Imaging by Forming a Hydrogen-Bond Network. Angew Chem Int Ed Engl 2018; 57:7473-7477. [PMID: 29682856 DOI: 10.1002/anie.201800293] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/10/2023]
Abstract
Two-photon imaging is an emerging tool for biomedical research and clinical diagnostics. Electron donor-acceptor (D-A) type molecules are the most widely employed two-photon scaffolds. However, current D-A type fluorophores suffer from solvatochromic quenching in aqueous biological samples. To address this issue, we devised a novel class of D-A type green fluorescent protein (GFP) chromophore analogues that form a hydrogen-bond network in water to improve the two-photon efficiency. Our design results in two-photon chalcone (TPC) dyes with 0.80 quantum yield and large two-photon action cross section (210 GM) in water. This strategy to form hydrogen bonds can be generalized to design two-photon materials with anti-solvatochromic fluorescence. To demonstrate the improved in vivo imaging, we designed a sulfide probe based on TPC dyes and monitored endogenous H2 S generation and scavenging in the cirrhotic rat liver for the first time.
Collapse
Affiliation(s)
- Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qian-Ling Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Si-Yu Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hai-Bo Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
17
|
Ren TB, Xu W, Zhang QL, Zhang XX, Wen SY, Yi HB, Yuan L, Zhang XB. Enhancing the Anti-Solvatochromic Two-Photon Fluorescence for Cirrhosis Imaging by Forming a Hydrogen-Bond Network. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Qian-Ling Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Si-Yu Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Hai-Bo Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 P. R. China
| |
Collapse
|
18
|
Xie Y, Husband JT, Torrent-Sucarrat M, Yang H, Liu W, O’Reilly RK. Rational design of substituted maleimide dyes with tunable fluorescence and solvafluorochromism. Chem Commun (Camb) 2018; 54:3339-3342. [PMID: 29542762 PMCID: PMC5885783 DOI: 10.1039/c8cc00772a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
Abstract
A series of maleimide derivatives were systematically designed and synthesized with tunable fluorescent properties. The facile modifications herein provide a simple methodology to expand the scope of maleimide-based dyes and also provide insight into the relationship between substitution pattern and optical properties.
Collapse
Affiliation(s)
- Yujie Xie
- Department of Chemistry, University of Warwick , Coventry , CV4 7AL , UK
| | | | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I , Universidad del País Vasco (UPV/EHU) , and Donostia International Physics Center (DIPC) , Manuel Lardizabal Ibilbidea 3 , Donostia 20018 , Spain
- Ikerbasque , Basque Foundation for Science , María Díaz de Haro 3, 6o̲ , Bilbao 48013 , Spain
| | - Huan Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Rachel K. O’Reilly
- Department of Chemistry, University of Warwick , Coventry , CV4 7AL , UK
- School of Chemistry, University of Birmingham , Edgbaston , B15 2TT , UK .
| |
Collapse
|