1
|
Kim P, Reynolds RS, Deal AM, Vaida V, Ahmed M, Wilson KR. Accelerated Zymonic Acid Formation from Pyruvic Acid at the Interface of Aqueous Nanodroplets. J Phys Chem Lett 2024; 15:11131-11138. [PMID: 39480001 DOI: 10.1021/acs.jpclett.4c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
To explore the role of the liquid interface in mediating reactivity in small compartments, the formation kinetics of zymonic acid (ZA) is measured in submicron aerosols (average radius = 240 nm) using mass spectrometry. The formation of ZA, from a condensation reaction of two pyruvic acid (PA) molecules, proceeds over days in bulk solutions, while in submicron aerosols, it occurs in minutes. The experimental results are replicated in a kinetic model using an apparent interfacial reaction rate coefficient of krxn = (0.9 ± 0.2) × 10-3 M-1 s-1. The simulation reveals that surface activity of PA coupled with an enhanced interfacial reaction rate drives accelerated ZA formation in aerosols. Experimental and simulated results provide compelling evidence that the condensation reaction of PA occurs exclusively at the aerosol interface with a reaction rate coefficient that is enhanced by 4 orders of magnitude (∼104) relative to what is estimated for macroscale solutions.
Collapse
Affiliation(s)
- Pyeongeun Kim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ryan S Reynolds
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alexandra M Deal
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Veronica Vaida
- Department of Chemistry and CIRES, University of Colorado, Boulder, Colorado 80309, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Freeman-Gallant G, Davis EJ, Scholer E, Alija O, Navea JG. Photooxidation of Nonanoic Acid by Molecular and Complex Environmental Photosensitizers. J Phys Chem A 2024. [PMID: 39498797 DOI: 10.1021/acs.jpca.4c05608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Photochemical aging and photooxidation of atmospheric particles play a crucial role in both the chemical and physical processes occurring in the troposphere. In particular, the presence of organic chromophores within atmospheric aerosols can trigger photosensitized oxidation that drives the atmospheric processes in these interfaces. However, the light-induced oxidation of the surface of atmospheric aerosols, especially those enriched with organic components, remains poorly understood. Herein, we present a gravimetric and vibrational spectroscopy study aimed to investigate the photosensitized oxidation of nonanoic acid (NA), a model system of fatty acids within organic aerosols, in the presence of complex organic photosensitizers and molecular proxies. Specifically, this study shows a comparative analysis of the photosensitized reactions of thin films containing nonanoic acid and four different organic photosensitizers, namely marine dissolved organic matter (m-DOM) and humic acids (HA) as environmental photosensitizers, and 4-imidazolecarboxaldehyde (4IC) and 4-benzoylbenzoic acid (4BBA) as molecular proxies. All reactions show predominant photooxidation of nonanoic acid, with important differences in the rate and yield of product formation depending on the photosensitizer. Limited changes were observed in the organic photosensitizer itself. Results show that, among the photosensitizers examined, 4BBA is the most effective in photooxidizing nonanoic acid. Overall, this work underscores the role of chromophores in the photooxidation of organic thin films and the relevance of such reactions on the surface of aerosols in the marine environment.
Collapse
Affiliation(s)
- Grace Freeman-Gallant
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Emily J Davis
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Elizabeth Scholer
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Onita Alija
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| | - Juan G Navea
- Chemistry Department, Skidmore College, Saratoga Springs, New York 12866-1632, United States
| |
Collapse
|
3
|
Liang J, Zhen P, Liu L, Zhou W, Li Y, Liu Y, Shen Y, Tong M. Functional group-specific reduction of Cr(VI) by low molecular weight organic acids in frozen solution: Kinetics, mechanism and DFT calculation. WATER RESEARCH 2024; 265:122221. [PMID: 39128334 DOI: 10.1016/j.watres.2024.122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Low molecular weight organic acids (LMWOA) are commonly present in natural water and play a pivotal role in the reduction of Cr(VI). In frozen solutions, the efficiency of Cr(VI) reduction is significantly enhanced due to the freezing concentration effect. However, this facilitation is found to be contingent upon the functional groups of LMWOA in this study. To be specific, LMWOA and Cr(VI) can form five-membered ring complexes, which greatly enhance electron transfer efficiency through Ligand-to-Metal Charge Transfer (LMCT). DFT calculations indicate that oxygen-containing groups located on carbon atoms at α positions play a crucial role in forming these complexes, ultimately determining the kinetics of Cr(VI) reduction. Moreover, freezing not only increases proton concentrations but also reduces free water molecule content in the liquid-like layer (LLL), thereby affecting LMWOA species through regulation of protonation and hydrolysis, and subsequently impacting reaction mechanisms. The stoichiometric ratios between LMWOA and Cr(VI) exceed theoretical values due to complexation with Cr(III). The reduction of Cr(VI) by LMWOA in frozen solutions is inhibited by soil solution, while the degree of inhibition varies among different types of LMWOA.
Collapse
Affiliation(s)
- Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Peng Zhen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Liping Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Wenshuai Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, P. R. China.
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yun Shen
- Department of Civil and Environmental Engineering, George Washington University. 800 22nd St NW, Washington, DC 20052
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
4
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
5
|
Song W, Guo S, Li H. Size-dependent acidity of aqueous nano-aerosols. Phys Chem Chem Phys 2024; 26:23125-23135. [PMID: 39189057 DOI: 10.1039/d4cp01752h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Understanding the accurate acidity of nano-aerosols is important for the research on atmospheric chemistry. Herein, we propose the contributions from both the aerosol size and multiphase buffer effect to the steady-state acidity of nano-aerosols at a constant aerosol water content (AWC) through molecular simulations. As increasing of the aerosol size, the solvation free energy (SFE, ΔGs) became more negative (decreasing by 3-130 kcal mol-1 for different types of species) and Henry's law constant (H) apparently increased (from e6 to e16 mol m-3 Pa-1) in the nano-aerosols compared to that in bulk solutions. The lower SFE led to lower solute pKa and pKb values; thus, the acidity of HSO4- and HNO3 and the alkalinity of NH3 showed positive relations with the aerosol size. The lower H also increased the pKa of gaseous solutes, leading to a decrease in the acidity of HNO3 and a shift from alkaline to acidic for the NH4+/NH3 buffer pair in the nano-aerosols. The present study revealed the relationship between aerosol acidity and solvent size from a microscopic perspective. Specifically, the acidity of aerosols containing HSO4-/SO42- and HNO3/NO3- decreased with an increase in their radii, whereas aerosols containing NH4+/NH3 exhibited an opposite trend. This phenomenon can be attributed to the disappearance of the interfacial effect with an increase in the size of the aerosols. The above conclusions are of great significance for studying the pH-dependent multi-phase chemical processes in aerosols.
Collapse
Affiliation(s)
- Wanrong Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shaoxun Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Curchod BFE, Orr-Ewing AJ. Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry. J Phys Chem A 2024; 128:6613-6635. [PMID: 39021090 PMCID: PMC11331530 DOI: 10.1021/acs.jpca.4c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Research that explores the chemistry of Earth's atmosphere is central to the current understanding of global challenges such as climate change, stratospheric ozone depletion, and poor air quality in urban areas. This research is a synergistic combination of three established domains: earth observation, for example, using satellites, and in situ field measurements; computer modeling of the atmosphere and its chemistry; and laboratory measurements of the properties and reactivity of gas-phase molecules and aerosol particles. The complexity of the interconnected chemical and photochemical reactions which determine the composition of the atmosphere challenges the capacity of laboratory studies to provide the spectroscopic, photochemical, and kinetic data required for computer models. Here, we consider whether predictions from computational chemistry using modern electronic structure theory and nonadiabatic dynamics simulations are becoming sufficiently accurate to supplement quantitative laboratory data for wavelength-dependent absorption cross-sections, photochemical quantum yields, and reaction rate coefficients. Drawing on presentations and discussions from the CECAM workshop on Theoretical and Experimental Advances in Atmospheric Photochemistry held in March 2024, we describe key concepts in the theory of photochemistry, survey the state-of-the-art in computational photochemistry methods, and compare their capabilities with modern experimental laboratory techniques. From such considerations, we offer a perspective on the scope of computational (photo)chemistry methods based on rigorous electronic structure theory to become a fourth core domain of research in atmospheric chemistry.
Collapse
|
7
|
Thøgersen J, Madzharova F, Weidner T, Jensen F. Aqueous pyruvate partly dissociates under deep ultraviolet irradiation but is resilient to near ultraviolet excitation. Nat Commun 2024; 15:1978. [PMID: 38438353 PMCID: PMC10912111 DOI: 10.1038/s41467-024-46309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
The deep ultraviolet photochemistry of aqueous pyruvate is believed to have been essential to the origin of life, and near ultraviolet excitation of pyruvate in aqueous aerosols is assumed to contribute significantly to the photochemistry of the Earth's atmosphere. However, the primary photochemistry of aqueous pyruvate is unknown. Here we study the susceptibility of aqueous pyruvate to photodissociation by deep ultraviolet and near ultraviolet irradiation with femtosecond spectroscopy supported by density functional theory calculations. The primary photo-dynamics of the aqueous pyruvate show that upon deep-UV excitation at 200 nm, about one in five excited pyruvate anions have dissociated by decarboxylation 100 ps after the excitation, while the rest of the pyruvate anions return to the ground state. Upon near-UV photoexcitation at a wavelength of 340 nm, the dissociation yield of aqueous pyruvate 200 ps after the excitation is insignificant and no products are observed. The experimental results are explained by our calculations, which show that aqueous pyruvate anions excited at 200 nm have sufficient excess energy for decarboxylation, whereas excitation at 340 nm provides the aqueous pyruvate anions with insufficient energy to overcome the decarboxylation barrier.
Collapse
Affiliation(s)
- Jan Thøgersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
8
|
Lei Z, Chen B, Brooks SD. Effect of Acidity on Ice Nucleation by Inorganic-Organic Mixed Droplets. ACS EARTH & SPACE CHEMISTRY 2023; 7:2562-2573. [PMID: 38148991 PMCID: PMC10749479 DOI: 10.1021/acsearthspacechem.3c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Aerosol acidity significantly influences heterogeneous chemical reactions and human health. Additionally, acidity may play a role in cloud formation by modifying the ice nucleation properties of inorganic and organic aerosols. In this work, we combined our well-established ice nucleation technique with Raman microspectroscopy to study ice nucleation in representative inorganic and organic aerosols across a range of pH conditions (pH -0.1 to 5.5). Homogeneous nucleation was observed in systems containing ammonium sulfate, sulfuric acid, and sucrose. In contrast, droplets containing ammonium sulfate mixed with diethyl sebacate, poly(ethylene glycol) 400, and 1,2,6-hexanetriol were found to undergo liquid-liquid phase separation, exhibiting core-shell morphologies with observed initiation of heterogeneous freezing in the cores. Our experimental findings demonstrate that an increased acidity reduces the ice nucleation ability of droplets. Changes in the ratio of bisulfate to sulfate coincided with shifts in ice nucleation temperatures, suggesting that the presence of bisulfate may decrease the ice nucleation efficiency. We also report on how the morphology and viscosity impact ice nucleation properties. This study aims to enhance our fundamental understanding of acidity's effect on ice nucleation ability, providing context for the role of acidity in atmospheric ice cloud formation.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| | - Bo Chen
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department of Atmospheric
Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Pollet R, Chin W. In silico Investigation of the Thermochemistry and Photoactivity of Pyruvic Acid in an Aqueous Solution of NaCl. Chemistry 2023; 29:e202302225. [PMID: 37539648 DOI: 10.1002/chem.202302225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
The photochemistry of oxocarboxylic acids contributes significantly to the complex chemistry occurring in the atmosphere. In this regard, pyruvic acid undergoes photoreactions that lead to many diverse products. The presence of sodium cation near pyruvic acid in an aqueous solution, or its conjugate base in non-acidic conditions, influences the hydration equilibrium and the photosensitivity to UV-visible light of the oxocarboxylic acid. We performed an ab initio metadynamics simulation which serves two purposes: first, it unveils the mechanisms of the reversible hydration reaction between the keto and the diol forms, with a free-energy difference of only 2 kJ/mol at 300 K, which shows the influence of sodium on the keto/diol ratio; second, it provides solvent-shared ion pairing (SSIP) and contact ion pairing (CIP) structures, including Na+ coordinated to carbonyl, for the calculations of the electronic transition energies to an antibonding π* orbital, which sheds light on the photoactivity of these two forms in the actinic region.
Collapse
Affiliation(s)
- Rodolphe Pollet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Wutharath Chin
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| |
Collapse
|
10
|
Deal A, Smith AE, Oyala KM, Campolo GH, Rugeley BE, Mose TA, Talley DL, Cooley CB, Rapf RJ. Infrared Reflection-Absorption Spectroscopy of α-Keto Acids at the Air-Water Interface: Effects of Chain Length and Headgroup on Environmentally Relevant Surfactant Films. J Phys Chem A 2023; 127:4137-4151. [PMID: 37103984 PMCID: PMC10184673 DOI: 10.1021/acs.jpca.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/12/2023] [Indexed: 04/28/2023]
Abstract
A variety of organic surfactants are found at air-water interfaces in natural environments, including on the surfaces of aqueous aerosols. The structure and morphology of these organic films can have profound impacts on material transfer between the gas and condensed phases, the optical properties of atmospheric aerosol, and chemical processing at air-water interfaces. Combined, these effects can have significant impacts on climate via radiative forcing, but our understanding of organic films at air-water interfaces is incomplete. Here, we examine the impact of the polar headgroup and alkyl tail length on the structure and morphology of organic monolayers at the air-water interfaces. First, we focus on the substituted carboxylic acids, α-keto acids, using Langmuir isotherms and infrared reflection absorption spectroscopy (IR-RAS) to elucidate key structures and phase behaviors of α-keto acids with a range of surface activities. We show that the structure of α-keto acids, both soluble and insoluble, at water surfaces is a compromise between van der Waals interactions of the hydrocarbon tail and hydrogen bonding interactions involving the polar headgroup. Then, we use this new data set regarding α-keto acid films at water surfaces to examine the role of the polar headgroup on organic films using a similar substituted carboxylic acid (α-hydroxystearic acid), an unsubstituted carboxylic acid (stearic acid), and an alcohol (stearyl alcohol). We show that the polar headgroup and its hydrogen bonding interactions can significantly affect the orientation of amphiphiles at air-water interfaces. Here, we provide side-by-side comparisons of Langmuir isotherms and IR-RA spectra for a set of environmentally relevant organic amphiphiles with a range of alkyl tail lengths and polar headgroup structures.
Collapse
Affiliation(s)
- Alexandra
M. Deal
- Department
of Chemistry and Cooperative Institute for Research in Environmental
Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Abigail E. Smith
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Krista M. Oyala
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Giovanna H. Campolo
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Burgess E. Rugeley
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Tim A. Mose
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Denver L. Talley
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Christina B. Cooley
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Rebecca J. Rapf
- Department
of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| |
Collapse
|
11
|
Wong C, Liu S, Nizkorodov SA. Highly Acidic Conditions Drastically Alter the Chemical Composition and Absorption Coefficient of α-Pinene Secondary Organic Aerosol. ACS EARTH & SPACE CHEMISTRY 2022; 6:2983-2994. [PMID: 36561193 PMCID: PMC9762236 DOI: 10.1021/acsearthspacechem.2c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Secondary organic aerosols (SOA), formed through the gas-phase oxidation of volatile organic compounds (VOCs), can reside in the atmosphere for many days. The formation of SOA takes place rapidly within hours after VOC emissions, but SOA can undergo much slower physical and chemical processes throughout their lifetime in the atmosphere. The acidity of atmospheric aerosols spans a wide range, with the most acidic particles having negative pH values, which can promote acid-catalyzed reactions. The goal of this work is to elucidate poorly understood mechanisms and rates of acid-catalyzed aging of mixtures of representative SOA compounds. SOA were generated by the ozonolysis of α-pinene in a continuous flow reactor and then collected using a foil substrate. SOA samples were extracted and aged by exposure to varying concentrations of aqueous H2SO4 for 1-2 days. Chemical analysis of fresh and aged samples was conducted using ultra-performance liquid chromatography coupled with photodiode array spectrophotomety and high-resolution mass spectrometry. In addition, UV-vis spectrophotometry and fluorescence spectrophotometry were used to examine the changes in optical properties before and after aging. We observed that SOA that aged in moderately acidic conditions (pH from 0 to 4) experienced small changes in composition, while SOA that aged in a highly acidic environment (pH from -1 to 0) experienced more dramatic changes in composition, including the formation of compounds containing sulfur. Additionally, at highly acidic conditions, light-absorbing and fluorescent compounds appeared, but their identities could not be ascertained due to their small relative abundance. This study shows that acidity is a major driver of SOA aging, resulting in a large change in the chemical composition and optical properties of aerosols in regions where high concentrations of H2SO4 persist, such as upper troposphere and lower stratosphere.
Collapse
|
12
|
Lewis JS, Gaunt AP, Comment A. Photochemistry of pyruvic acid is governed by photo-induced intermolecular electron transfer through hydrogen bonds. Chem Sci 2022; 13:11849-11855. [PMID: 36320913 PMCID: PMC9580485 DOI: 10.1039/d2sc03038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Despite more than 85 years of research, the mechanism behind the photodecarboxylation of pyruvic acid remains elusive. Most studies focused on the gas and liquid phase of diluted solutions of pyruvic acid to understand the impact of sun light on the degradation of this molecule in the atmosphere. By analyzing concentrated supercooled solutions at 77 K, we demonstrate that instead of decarboxylating, the pyruvic acid molecule plays the role of electron donor and transfers an electron to an acceptor molecule that subsequently degrades to form CO2. We show that this electron transfer occurs via hydrogen bonding and that in aqueous solutions of pyruvic acid, the hydrated form is the electron acceptor. These findings demonstrate that photo-induced electron transfer via hydrogen bonding can occur between two simple carboxylic acids and that this mechanism governs the photochemistry of pyruvic acid, providing unexplored alternative pathways for the decarboxylation of photo-inactive molecules. When supercooled pyruvic acid is photo-irradiated, a radical detectable by ESR forms following the transfer of an electron from a molecule in its keto form to a molecule in its hydrated form. The latter subsequently degrades to CO2 and acetic acid.![]()
Collapse
Affiliation(s)
- Jennifer S. Lewis
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Adam P. Gaunt
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of CambridgeRobinson WayCambridgeCB2 0REUK,General Electric HealthcarePollards Wood, Nightingales Lane, Chalfont St GilesHP8 4SPUK
| |
Collapse
|
13
|
Cao W, Hu Z, Peng X, Sun H, Sun Z, Wang XB. Annihilating Actinic Photochemistry of the Pyruvate Anion by One and Two Water Molecules. J Am Chem Soc 2022; 144:19317-19325. [PMID: 36166618 DOI: 10.1021/jacs.2c06319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photochemical behaviors of pyruvic acid in multiple phases have been extensively studied, while those of its conjugate base, the pyruvate anion (CH3COCOO-, PA-) are less understood and remain contradictory in gaseous versus aqueous phases. Here in this article, we report a joint experimental and theoretical study combining cryogenic, wavelength-resolved negative ion photoelectron spectroscopy (NIPES) and high-level quantum chemical computations to investigate PA- actinic photochemistry and its dependence on microsolvation in the gas phase. PA-·nH2O (n = 0-5) clusters were generated and characterized, with their low-lying isomers identified. NIPES conducted at multiple wavelengths across the PA- actinic regime revealed the PA- photochemistry extremely sensitive to its hydration extent. While bare PA- anions exhibit active photoinduced dissociations that generate the acetyl (CH3CO-), methide (CH3-) anions, their corresponding radicals, and slow electrons, one single attached water molecule results in significant suppression with a subsequent second water being able to completely block all dissociation pathways, effectively annihilating all PA- photochemical reactivities. The underlying dissociation mechanisms of PA-·nH2O (n = 0-2) clusters are proposed involving nπ* excitation, dehydration, decarboxylation, and further CO loss. Since the photoexcited dihydrate does not have sufficient energy to overcome the full dehydration barrier before PA- could fragmentate, the PA- dissociation pathway is completely blocked, with the energy most likely released via loss of one water and internal electronic and vibrational relaxations. The insight unraveled in this work provides a much-needed critical link to connect the seemingly conflicting PA- actinic chemistry between the gas and condensed phases.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xiaogai Peng
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
14
|
Chen J, Miao XN, An T. Detection of excited triplet species from photolysis of carbonyls: Direct evidence for single oxygen formation in atmospheric environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155464. [PMID: 35508234 DOI: 10.1016/j.scitotenv.2022.155464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Excited triplet species play an important role in the photolytic formation of 1O2 from carbonyls, but the related mechanism is still uncertain, due to lack of direct evidence. In this study, steady-state and transient photolysis of eleven carbonyls to produce 1O2 was investigated. Dicarbonyl displayed greater 1O2 production ability than monocarbonyl, while dicarbonyl containing both ketone and carboxyl groups connected by CC bond (i.e., pyruvic acid (PA)) showed the highest 1O2 steady-state concentration ([1O2]SS). For the first time, the production of 3PA* from PA with narrow energy gap was confirmed by laser flash photolysis technique and the second-order decay rate constant of 3PA* was 2.78 × 107 M-1 s-1. Quenching results verified the dominant contribution of 3PA* to 1O2 production from PA. Addition of inorganic salt or increase in solution pH showed negligible effect on 3PA*, but significantly decreased the [1O2]SS of PA by up to two orders of magnitude, due to reduction of hydrate content. Photolysis of methylglyoxal and dimethylamine mixture led to higher content of excited triplet species at pH ≈ 11 and remarkably enhanced [1O2]SS, which was 2.3 times of that from PA and dimethylamine mixture. These findings provide direct evidence for the contribution of transient species from carbonyls or their product to 1O2 formation in atmospheric environment.
Collapse
Affiliation(s)
- Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xu-Nuo Miao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Molecular characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in wintertime aerosols of Northwest China. Sci Rep 2022; 12:11266. [PMID: 35789176 PMCID: PMC9253100 DOI: 10.1038/s41598-022-15222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Dicarboxylic acids are one of the important water-soluble organic compounds in atmospheric aerosols, causing adverse effects to both climate and human health. More attention has therefore been paid to organic acids in aerosols. In this study, the molecular distribution and diurnal variations of wintertime dicarboxylic acids in a rural site of Guanzhong Plain, Northwest China, were explored. Oxalic acid (C2, day: 438.9 ± 346.8 ng m−3, night: 398.8 ± 392.3 ng m−3) is the most abundant compound followed by methylglyoxal (mGly, day: 207.8 ± 281.1 ng m−3, night: 222.9 ± 231.0 ng m−3) and azelaic (C9, day: 212.8 ± 269.1 ng m−3, night: 211.4 ± 136.7 ng m−3) acid. The ratios of C9/C6 and C9/Ph indicating that atmospheric dicarboxylic acids in winter in the region mainly come from biomass burning. Furthermore, secondary inorganic ions (NO3−, SO42−, and NH4+), relative humidity, liquid water content, and in-situ pH of aerosols are highly linearly correlated with C2, suggesting that liquid phase oxidation is an important pathway for the formation of dicarboxylic acids. The δ13C analysis of C2 suggested that lighter carbon isotope compositions tend to be oxidized to form aqueous-phase secondary organic aerosols (aqSOA), leading to the decay of 13C in aqSOA products rather than aerosol aging. This study provides a theoretical basis for the mechanism of formation of dicarboxylic acid.
Collapse
|
16
|
Lesnicki D, Wank V, Cyran JD, Backus EHG, Sulpizi M. Lower degree of dissociation of pyruvic acid at water surfaces than in bulk. Phys Chem Chem Phys 2022; 24:13510-13513. [PMID: 35640627 DOI: 10.1039/d2cp01293f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the acid/base behavior of environmentally relevant organic acids is of key relevance for accurate climate modelling. Here we investigate the effect of pH on the (de)protonation state of pyruvic acid at the air-water interface and in bulk by using the analytical techniques surface-specific vibrational sum frequency generation and attenuated total reflection spectroscopy. To provide a molecular interpretation of the observed behavior, simulations are carried out using a free energy perturbation approach in combination with electronic structure-based molecular dynamics. In both the experimental and theoretical results we observe that the protonated form of pyruvic acid is preferred at the air-water interface. The increased proton affinity is the result of the specific microsolvation at the interface.
Collapse
Affiliation(s)
- Dominika Lesnicki
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany.
| | - Veronika Wank
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria. .,University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Jenée D Cyran
- Department of Chemistry and Biochemistry, Baylor University, 76706 Waco, Texas, USA
| | - Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria. .,University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Marialore Sulpizi
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany. .,Department of Physics, Ruhr Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
17
|
Ji X, Yang Z, Wu X, Deng GJ, Huang H. Photoredox Neutral Decarboxylative Hydroxyalkylations of Heteroarenes with α-Keto Acids. J Org Chem 2022; 87:4168-4182. [PMID: 35212524 DOI: 10.1021/acs.joc.1c03007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoredox neutral decarboxylative hydroxyalkylations of heteroarenes with α-keto acids under mild conditions are described. Stable and readily available α-keto acids were employed as hydroxyalkylating reagents with only CO2 released as the byproduct. A range of aromatic and aliphatic α-keto acids were successfully converted into hydroxyalkylated products with various heteroarenes. This transformation proceeded through a decarboxylation/Minisci addition/SCS sequence, generating a variety of valuable hydroxyalkylated heteroarenes.
Collapse
Affiliation(s)
- Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhonglin Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xinzhuang Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
18
|
Barquilla MDP, Mayes ML. Role of hydrogen bonding in bulk aqueous phase decomposition, complexation, and covalent hydration of pyruvic acid. Phys Chem Chem Phys 2022; 24:25151-25170. [DOI: 10.1039/d2cp03579k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The behavior of hydrogen bonding changes between the gas and aqueous phase, altering the mechanisms of various pyruvic acid processes and consequently affecting the aerosol formation in different environments.
Collapse
Affiliation(s)
- Michael Dave P. Barquilla
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Maricris L. Mayes
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| |
Collapse
|
19
|
Zhao JJ, Zhang YF, Zhao TL, Li H, Yao QZ, Fu SQ, Zhou GT. Abiotic Formation of Calcium Oxalate under UV Irradiation and Implications for Biomarker Detection on Mars. ASTROBIOLOGY 2022; 22:35-48. [PMID: 35020413 DOI: 10.1089/ast.2020.2416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A major objective in the exploration of Mars is to test the hypothesis that the planet has ever hosted life. Biogenic compounds, especially biominerals, are believed to serve as biomarkers in Raman-assisted remote sensing missions. However, the prerequisite for the development of these minerals as biomarkers is the uniqueness of their biogenesis. Herein, tetragonal bipyramidal weddellite, a type of calcium oxalate, is successfully achieved by UV-photolyzing pyruvic acid (PA). The as-prepared products are identified and characterized by micro-Raman spectroscopy and field emission scanning electron microscopy. Persistent mineralization of weddellite is observed with altering key experimental parameters, including pH, Ca2+ and PA concentrations. In particular, the initial concentration of PA can significantly influence the morphology of weddellite crystal. Oxalate acid is commonly of biological origin; thus calcium oxalate is considered to be a biomarker. However, our results reveal that calcium oxalate can be harvested by a UV photolysis pathway. Moreover, prebiotic sources of organics (e.g., PA, glycine, alanine, and aspartic acid) have been proven to be available through abiotic pathways. Therefore, our results may provide a new abiotic pathway of calcium oxalate formation. Considering that calcium oxalate minerals have been taken as biosignatures for the origin and early evolution of life on Earth and astrobiological investigations, its formation and accumulation by the photolysis of abiological organic compounds should be taken into account.
Collapse
Affiliation(s)
- Jia-Jian Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Yi-Fan Zhang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Tian-Lei Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Han Li
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Qi-Zhi Yao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, P.R. China
| | - Sheng-Quan Fu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Gen-Tao Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
20
|
Tilgner A, Schaefer T, Alexander B, Barth M, Collett JL, Fahey KM, Nenes A, Pye HOT, Herrmann H, McNeill VF. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:10.5194/acp-21-13483-2021. [PMID: 34675968 PMCID: PMC8525431 DOI: 10.5194/acp-21-13483-2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.
Collapse
Affiliation(s)
- Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA 98195, USA
| | - Mary Barth
- Atmospheric Chemistry Observation & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
Gong C, Zhao Y, Zhang D, Wang J, Mu C, Wang W, Zhu S, Zhang X. Investigation of the Acid-Mediated Photosensitized Reactions of Amphiphilic α-Keto Acids at the Air-Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2306-2312. [PMID: 33561341 DOI: 10.1021/jasms.1c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The photochemistry of α-keto acids has been of great interest due to its implications in atmospheric and prebiotic chemistries. α-Keto acids with long alkyl chains are amphiphilic in nature, and they tend to partition at the air-water interface of atmospheric water droplets and add to the complexity of the chemistries therein. The air-water interface is a unique environment that plays a vital role in overall atmospheric processes. However, existing studies mostly focus on the photochemistry of α-keto acids in the bulk solution and neglect the reactions that occur at the interface. In this study, using the field-induced droplet ionization mass spectrometry methodology that is capable of selectively sampling amphiphilic molecules that reside at the air-water interface, we show that the acid-mediated photochemistry of 2-oxooctanoic acid and 2-oxoheptoic acid is highly different from those of previously reported reactions in the bulk and contributes to the formation of humic-like substances (HULIS). This work emphasizes the uniqueness of the photochemistry at the air-water interface. We anticipate that studies of atmosphere-relevant photochemistry at the air-water interface will be an avenue rich with opportunities.
Collapse
Affiliation(s)
- Chu Gong
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Yutao Zhao
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Jie Wang
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Chaonan Mu
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Wei Wang
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Shoufei Zhu
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory and Institute of Elemento-Organic Chemistry, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Aqueous Photochemistry of 2-Oxocarboxylic Acids: Evidence, Mechanisms, and Atmospheric Impact. Molecules 2021; 26:molecules26175278. [PMID: 34500711 PMCID: PMC8433822 DOI: 10.3390/molecules26175278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022] Open
Abstract
Atmospheric organic aerosols play a major role in climate, demanding a better understanding of their formation mechanisms by contributing multiphase chemical reactions with the participation of water. The sunlight driven aqueous photochemistry of small 2-oxocarboxylic acids is a potential major source of organic aerosol, which prompted the investigations into the mechanisms of glyoxylic acid and pyruvic acid photochemistry reviewed here. While 2-oxocarboxylic acids can be contained or directly created in the particles, the majorities of these abundant and available molecules are in the gas phase and must first undergo the surface uptake process to react in, and on the surface, of aqueous particles. Thus, the work also reviews the acid-base reaction that occurs when gaseous pyruvic acid meets the interface of aqueous microdroplets, which is contrasted with the same process for acetic acid. This work classifies relevant information needed to understand the photochemistry of aqueous pyruvic acid and glyoxylic acid and motivates future studies based on reports that use novel strategies and methodologies to advance this field.
Collapse
|
23
|
Deal AM, Rapf RJ, Vaida V. Water-Air Interfaces as Environments to Address the Water Paradox in Prebiotic Chemistry: A Physical Chemistry Perspective. J Phys Chem A 2021; 125:4929-4942. [PMID: 33979519 DOI: 10.1021/acs.jpca.1c02864] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The asymmetric water-air interface provides a dynamic aqueous environment with properties that are often very different than bulk aqueous or gaseous phases and promotes reactions that are thermodynamically, kinetically, or otherwise unfavorable in bulk water. Prebiotic chemistry faces a key challenge: water is necessary for life yet reduces the efficiency of many biomolecular synthesis reactions. This perspective considers water-air interfaces as auspicious reaction environments for abiotic synthesis. We discuss recent evidence that (1) water-air interfaces promote condensation reactions including peptide synthesis, phosphorylation, and oligomerization; (2) photochemistry at water-air interfaces may have been a significant source of prebiotic molecular complexity, given the lack of oxygen and increased availability of near-ultraviolet radiation on early Earth; and (3) water-air interfaces can promote spontaneous reduction and oxidation reactions, potentially providing protometabolic pathways. Life likely began within a relatively short time frame, and water-air interfaces offer promising environments for simultaneous and efficient biomolecule production.
Collapse
Affiliation(s)
- Alexandra M Deal
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Rebecca J Rapf
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
24
|
Abstract
Deciphering the origins of the chemistry that supports life has frequently centered on determining prebiotically plausible paths that produce the molecules found in biology. What has been less investigated is how the energy released from the breakdown of foodstuff is coupled to the persistence of the protocell. To gain better insight into how such coupled chemistry could have emerged prebiotically, we probed the reactivity of the ribodinucleotide NAD+ with small organic molecules that were previously identified as potential constituents of protometabolism. We find that NAD+ is readily reduced nonenzymatically by α-keto acids, such as pyruvate and oxaloacetate, during oxidative decarboxylation. In the presence of FAD and a terminal electron acceptor, the consumption of α-keto acids by NAD+ initiates a plausible prebiotic electron transport chain. The observed reactivity suggests that components of the RNA world were capable of initiating the chemistry needed to capture the energy released from catabolism to drive anabolism.
Collapse
|
25
|
Pollet R, Chin W. Reversible Hydration of α-Dicarbonyl Compounds from Ab Initio Metadynamics Simulations: Comparison between Pyruvic and Glyoxylic Acids in Aqueous Solutions. J Phys Chem B 2021; 125:2942-2951. [PMID: 33725456 DOI: 10.1021/acs.jpcb.0c09748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glyoxylic and pyruvic oxoacids are widely available in the atmosphere as gas-phase clusters and particles or in wet aerosols. In aqueous conditions, they undergo interconversion between the unhydrated oxo and gem-diol forms, where two hydroxyl groups replace the carbonyl group. We here examine the hydration equilibrium of glyoxylic and pyruvic acids with first-principles simulations in water at ambient conditions using ab initio metadynamics to reconstruct the corresponding free-energy landscapes. The main results are as follows: (i) our simulations reveal the high conformational diversity of these species in aqueous solutions. (ii) We show that gem-diol is strongly favored in water compared to its oxo counterpart by 29 and 16 kJ/mol for glyoxylic and pyruvic acids, respectively. (iii) From our atomic-scale simulations, we present new insights into the reaction mechanisms with a special focus on hydrogen-bond arrangements and the electronic structure of the transition state.
Collapse
Affiliation(s)
- Rodolphe Pollet
- NIMBE, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Wutharath Chin
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
26
|
Kappes KJ, Deal AM, Jespersen MF, Blair SL, Doussin JF, Cazaunau M, Pangui E, Hopper BN, Johnson MS, Vaida V. Chemistry and Photochemistry of Pyruvic Acid at the Air–Water Interface. J Phys Chem A 2021; 125:1036-1049. [DOI: 10.1021/acs.jpca.0c09096] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keaten J. Kappes
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexandra M. Deal
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Malte F. Jespersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Sandra L. Blair
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jean-Francois Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Creteil, France
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Creteil, France
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Creteil, France
| | - Brianna N. Hopper
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Matthew S. Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
27
|
Gordon BP, Lindquist GA, Crawford ML, Wren SN, Moore FG, Scatena LF, Richmond GL. Diol it up: The influence of NaCl on methylglyoxal surface adsorption and hydration state at the air–water interface. J Chem Phys 2020; 153:164705. [DOI: 10.1063/5.0017803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Department of Chemistry, University of California, Irvine, 1214 Natural Sciences II, Irvine, California 92697, USA
| | - Grace A. Lindquist
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Michael L. Crawford
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Sumi N. Wren
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Environment and Climate Change Canada (ECCC), Air Quality Research Division, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, USA
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
28
|
Amorim JV, Wu S, Klimchuk K, Lau C, Williams FJ, Huang Y, Zhao R. pH Dependence of the OH Reactivity of Organic Acids in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12484-12492. [PMID: 32936620 DOI: 10.1021/acs.est.0c03331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photochemical processing taking place in atmospheric aqueous phases serves as both a source and a sink of organic compounds. In aqueous environments, acid-base chemistry and, by extension, aqueous-phase pH, are an important yet often neglected factors to consider when investigating the kinetics of organic compounds. We have investigated the aqueous-phase OH-oxidation of pinic acid, cis-pinonic acid, limononic acid, and formic acid (FA) as a function of pH. We have also extended our studies to other organic acids (OAs) present in the water-soluble fraction of secondary organic aerosol (SOA) arising from the ozonolysis of α-pinene. Although all the OAs exhibited larger OH reactivities at pH 10, the pH dependence was dramatically different between FA, the smallest OA, and those that contained more than eight carbons. A kinetic box model was also employed to characterize our photoreactor and to provide confidence to our results. Our finding shows that the atmospheric lifetimes of small OAs (e.g., FA) are highly sensitive to cloud water pH. However, those of larger OAs and many other OAs in α-pinene SOA are affected to a much less extent. These results are of great importance for the simplification of cloud water chemistry models.
Collapse
Affiliation(s)
- Jéssica Vejdani Amorim
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Keifer Klimchuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Florence J Williams
- Department of Chemistry, University of Iowa, W285 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Yuanlong Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Ran Zhao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
29
|
Anglada JM, Martins-Costa MTC, Francisco JS, Ruiz-López MF. Photoinduced Oxidation Reactions at the Air-Water Interface. J Am Chem Soc 2020; 142:16140-16155. [PMID: 32833454 DOI: 10.1021/jacs.0c06858] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemistry on water is a fascinating area of research. The surface of water and the interfaces between water and air or hydrophobic media represent asymmetric environments with unique properties that lead to unexpected solvation effects on chemical and photochemical processes. Indeed, the features of interfacial reactions differ, often drastically, from those of bulk-phase reactions. In this Perspective, we focus on photoinduced oxidation reactions, which have attracted enormous interest in recent years because of their implications in many areas of chemistry, including atmospheric and environmental chemistry, biology, electrochemistry, and solar energy conversion. We have chosen a few representative examples of photoinduced oxidation reactions to focus on in this Perspective. Although most of these examples are taken from the field of atmospheric chemistry, they were selected because of their broad relevance to other areas. First, we outline a series of processes whose photochemistry generates hydroxyl radicals. These OH precursors include reactive oxygen species, reactive nitrogen species, and sulfur dioxide. Second, we discuss processes involving the photooxidation of organic species, either directly or via photosensitization. The photochemistry of pyruvic acid and fatty acid, two examples that demonstrate the complexity and versatility of this kind of chemistry, is described. Finally, we discuss the physicochemical factors that can be invoked to explain the kinetics and thermodynamics of photoinduced oxidation reactions at aqueous interfaces and analyze a number of challenges that need to be addressed in future studies.
Collapse
Affiliation(s)
- Josep M Anglada
- Departament de Química Biològica, IQAC-CSIC, c/Jordi Girona 18, E-08034 Barcelona, Spain
| | - Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-631, United States
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
30
|
Luo M, Shemesh D, Sullivan MN, Alves MR, Song M, Gerber RB, Grassian VH. Impact of pH and NaCl and CaCl2 Salts on the Speciation and Photochemistry of Pyruvic Acid in the Aqueous Phase. J Phys Chem A 2020; 124:5071-5080. [DOI: 10.1021/acs.jpca.0c01016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Dorit Shemesh
- Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael N. Sullivan
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Michael R. Alves
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Meishi Song
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - R. Benny Gerber
- Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, United States
| |
Collapse
|
31
|
Blair SL, Reed Harris AE, Frandsen BN, Kjaergaard HG, Pangui E, Cazaunau M, Doussin JF, Vaida V. Conformer-Specific Photolysis of Pyruvic Acid and the Effect of Water. J Phys Chem A 2020; 124:1240-1252. [DOI: 10.1021/acs.jpca.9b10613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra L. Blair
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Allison E. Reed Harris
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Benjamin N. Frandsen
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Créteil, France
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Créteil, France
| | - Jean-Francois Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Créteil, France
| | - Veronica Vaida
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, UCB 216, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Boyer HC, Gorkowski K, Sullivan RC. In Situ pH Measurements of Individual Levitated Microdroplets Using Aerosol Optical Tweezers. Anal Chem 2020; 92:1089-1096. [PMID: 31760745 DOI: 10.1021/acs.analchem.9b04152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pH of microscale reaction environments controls numerous physicochemical processes, requiring a real-time pH microprobe. We present highly accurate real-time pH measurements of microdroplets using aerosol optical tweezers (AOT) and analysis of the whispering gallery modes (WGMs) contained in the cavity-enhanced Raman spectra. Uncertainties ranging from ±0.03 to 0.06 in pH for picoliter droplets are obtained through averaging Raman frames acquired at 0.5 Hz over 3.3 min. The high accuracy in pH determination is achieved by combining two independent measurements uniquely provided by the AOT approach: the anion concentration ratio from the spontaneous Raman spectra, and the total solute concentration from the refractive index retrieved from WGM analysis of the stimulated cavity-enhanced Raman spectra. pH can be determined over a range of -0.36 to 0.76 using the aqueous sodium bisulfate system. This technique enables direct measurements of pH-dependent chemical and physical changes experienced by individual microparticles and exploration of the role of pH in the chemical behavior of confined microenvironments.
Collapse
Affiliation(s)
- Hallie C Boyer
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kyle Gorkowski
- Department of Atmospheric and Oceanic Sciences , McGill University , Montreal , Quebec H3A 0B9 , Canada
| | - Ryan C Sullivan
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
33
|
Shemesh D, Luo M, Grassian VH, Gerber RB. Absorption spectra of pyruvic acid in water: insights from calculations for small hydrates and comparison to experiment. Phys Chem Chem Phys 2020; 22:12658-12670. [DOI: 10.1039/d0cp01810d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study shows that small hydrate models including the roles of both neutral and deprotonated speciated forms provide a good quantitative description and a microscopic interpretation of the experimental spectrum of pyruvic acid in aqueous solution.
Collapse
Affiliation(s)
- Dorit Shemesh
- Institute of Chemistry
- Fritz Haber Research Center
- Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Man Luo
- Department of Chemistry
- University of California
- San Diego
- USA
| | | | - R. Benny Gerber
- Institute of Chemistry
- Fritz Haber Research Center
- Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|
34
|
Eugene AJ, Guzman MI. Production of Singlet Oxygen ( 1O 2) during the Photochemistry of Aqueous Pyruvic Acid: The Effects of pH and Photon Flux under Steady-State O 2(aq) Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12425-12432. [PMID: 31550134 DOI: 10.1021/acs.est.9b03742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The photochemistry of pyruvic acid (PA) in aqueous atmospheric particles contributes to the production of secondary organic aerosols. This work investigates the fate of ketyl and acetyl radicals produced during the photolysis (λ ≥ 305 nm) of 5-100 mM PA under steady state [O2(aq)] = 260 μM (1.0 ≤ pH ≤ 4.5) for photon fluxes between 1 and 10 suns. The radicals diffuse quickly into the water/air interface of microbubbles and react with dissolved O2 to produce singlet oxygen (1O2*). Furfuryl alcohol is used to trap and bracket the steady-state production of 2 × 10-12 ≤ [1O2*] ≤ 1 × 10-11 M. Ion chromatography mass spectrometry shows that 2,3-dimethyltartaric acid (DMTA), 2-(3-oxobutan-2-yloxy)-2-hydroxypropanoic acid (oxo-C7 product), and 2-(1-carboxy-1-hydroxyethoxy)-2-methyl-3-oxobutanoic acid (oxo-C8 product) are formed under all conditions investigated. The sigmoidal dependence of initial reaction rates with pH resembles the dissociation curve of PA. For increasing photon fluxes, the branching ratio of products shifts away from the radical recombination that favors DMTA toward multistep radical chemistry forming more complex oxocarboxylic acids (oxo-C7 + oxo-C8). The large steady-state production of 1O2 indicates that PA in aerosols can be a significant source of atmospheric oxidants on par with natural organic matter.
Collapse
Affiliation(s)
- Alexis J Eugene
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| | - Marcelo I Guzman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , United States
| |
Collapse
|
35
|
Gordon BP, Moore FG, Scatena LF, Richmond GL. On the Rise: Experimental and Computational Vibrational Sum Frequency Spectroscopy Studies of Pyruvic Acid and Its Surface-Active Oligomer Species at the Air–Water Interface. J Phys Chem A 2019; 123:10609-10619. [DOI: 10.1021/acs.jpca.9b08854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, United States
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
36
|
Alves MR, Fang Y, Wall KJ, Vaida V, Grassian VH. Chemistry and Photochemistry of Pyruvic Acid Adsorbed on Oxide Surfaces. J Phys Chem A 2019; 123:7661-7671. [DOI: 10.1021/acs.jpca.9b06563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael R. Alves
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Yuan Fang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kristin J. Wall
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Veronica Vaida
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Vicki H. Grassian
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Nanoengineering and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
37
|
Lee JK, Samanta D, Nam HG, Zare RN. Micrometer-Sized Water Droplets Induce Spontaneous Reduction. J Am Chem Soc 2019; 141:10585-10589. [DOI: 10.1021/jacs.9b03227] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Devleena Samanta
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hong Gil Nam
- Center
for Plant
Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
The Effects of Reactant Concentration and Air Flow Rate in the Consumption of Dissolved O₂ during the Photochemistry of Aqueous Pyruvic Acid. Molecules 2019; 24:molecules24061124. [PMID: 30901878 PMCID: PMC6470820 DOI: 10.3390/molecules24061124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
The sunlight photochemistry of the organic chromophore pyruvic acid (PA) in water generates ketyl and acetyl radicals that contribute to the production and processing of atmospheric aerosols. The photochemical mechanism is highly sensitive to dissolved oxygen content, [O2(aq)], among other environmental conditions. Thus, herein we investigate the photolysis (λ ≥ 305 nm) of 10–200 mM PA at pH 1.0 in water covering the relevant range 0 ≤ [O2(aq)] ≤ 1.3 mM. The rapid consumption of dissolved oxygen by the intermediate photolytic radicals is monitored in real time with a dissolved oxygen electrode. In addition, the rate of O2(aq) consumption is studied at air flow rates from 30.0 to 900.0 mL min−1. For the range of [PA]0 covered under air saturated conditions and 30 mL min−1 flow of air in this setup, the estimated half-lives of O2(aq) consumed by the photolytic radicals fall within the interval from 22 to 3 min. Therefore, the corresponding depths of penetration of O2(g) into water (x = 4.3 and 1.6 µm) are determined, suggesting that accumulation and small coarse mode aqueous particles should not be O2-depleted in the presence of sunlight photons impinging this kind of chromophore. These photochemical results are of major tropospheric relevance for understanding the formation and growth of secondary organic aerosol.
Collapse
|
39
|
Fang Y, Lesnicki D, Wall KJ, Gaigeot MP, Sulpizi M, Vaida V, Grassian VH. Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study. J Phys Chem A 2019; 123:983-991. [DOI: 10.1021/acs.jpca.8b10224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Fang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Dominika Lesnicki
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55099, Germany
| | - Kristin J. Wall
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry val d’Essonne, Blvd F. Mitterrand, Bat Maupertuis, Evry 91025, France
| | - Marialore Sulpizi
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55099, Germany
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
40
|
Grygoryeva K, Ončák M, Pysanenko A, Fárník M. Pyruvic acid proton and hydrogen transfer reactions in clusters. Phys Chem Chem Phys 2019; 21:8221-8227. [DOI: 10.1039/c8cp07008c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate ion chemistry in pyruvic acid (PA) clusters in a molecular beam experiment.
Collapse
Affiliation(s)
- Kateryna Grygoryeva
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
- University of Chemistry and Technology
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- A-6020 Innsbruck
- Austria
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| |
Collapse
|
41
|
Marco-Rius I, Cheng T, Gaunt AP, Patel S, Kreis F, Capozzi A, Wright AJ, Brindle KM, Ouari O, Comment A. Photogenerated Radical in Phenylglyoxylic Acid for in Vivo Hyperpolarized 13C MR with Photosensitive Metabolic Substrates. J Am Chem Soc 2018; 140:14455-14463. [PMID: 30346733 PMCID: PMC6217999 DOI: 10.1021/jacs.8b09326] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 02/08/2023]
Abstract
Whether for 13C magnetic resonance studies in chemistry, biochemistry, or biomedicine, hyperpolarization methods based on dynamic nuclear polarization (DNP) have become ubiquitous. DNP requires a source of unpaired electrons, which are commonly added to the sample to be hyperpolarized in the form of stable free radicals. Once polarized, the presence of these radicals is unwanted. These radicals can be replaced by nonpersistent radicals created by the photoirradiation of pyruvic acid (PA), which are annihilated upon dissolution or thermalization in the solid state. However, since PA is readily metabolized by most cells, its presence may be undesirable for some metabolic studies. In addition, some 13C substrates are photosensitive and therefore may degrade during the photogeneration of a PA radical, which requires ultraviolet (UV) light. We show here that the photoirradiation of phenylglyoxylic acid (PhGA) using visible light produces a nonpersistent radical that, in principle, can be used to hyperpolarize any molecule. We compare radical yields in samples containing PA and PhGA upon photoirradiation with broadband and narrowband UV-visible light sources. To demonstrate the suitability of PhGA as a radical precursor for DNP, we polarized the gluconeogenic probe 13C-dihydroxyacetone, which is UV-sensitive, using a commercial 3.35 T DNP polarizer and then injected this into a mouse and followed its metabolism in vivo.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Tian Cheng
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Adam P. Gaunt
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Saket Patel
- Aix-Marseille
University, CNRS, ICR, 13007 Marseille, France
| | - Felix Kreis
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Andrea Capozzi
- Department
of Electrical Engineering, Center for Hyperpolarization in Magnetic
Resonance, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Alan J. Wright
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Kevin M. Brindle
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Olivier Ouari
- Aix-Marseille
University, CNRS, ICR, 13007 Marseille, France
| | - Arnaud Comment
- Cancer Research
UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge CB2 0RE, U.K.
- General
Electric Healthcare, HP7
9NA Chalfont St. Giles, U.K.
| |
Collapse
|
42
|
Craig RL, Peterson PK, Nandy L, Lei Z, Hossain MA, Camarena S, Dodson RA, Cook RD, Dutcher CS, Ault AP. Direct Determination of Aerosol pH: Size-Resolved Measurements of Submicrometer and Supermicrometer Aqueous Particles. Anal Chem 2018; 90:11232-11239. [DOI: 10.1021/acs.analchem.8b00586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Lucy Nandy
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | - Cari S. Dutcher
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
43
|
Rapf R, Perkins RJ, Dooley MR, Kroll JA, Carpenter BK, Vaida V. Environmental Processing of Lipids Driven by Aqueous Photochemistry of α-Keto Acids. ACS CENTRAL SCIENCE 2018; 4:624-630. [PMID: 29806009 PMCID: PMC5968514 DOI: 10.1021/acscentsci.8b00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles.
Collapse
Affiliation(s)
- Rebecca
J. Rapf
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Russell J. Perkins
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael R. Dooley
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jay A. Kroll
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| | - Barry K. Carpenter
- School
of Chemistry and the Physical Organic Chemistry Centre, Cardiff University, Cardiff CF10 3AT, United
Kingdom
| | - Veronica Vaida
- Department
of Chemistry and Biochemistry and Cooperative Institute for Research
in Environmental Sciences, University of
Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
44
|
Gordon BP, Moore FG, Scatena LF, Valley NA, Wren SN, Richmond GL. Model Behavior: Characterization of Hydroxyacetone at the Air-Water Interface Using Experimental and Computational Vibrational Sum Frequency Spectroscopy. J Phys Chem A 2018; 122:3837-3849. [PMID: 29608301 DOI: 10.1021/acs.jpca.8b01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Å deep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.
Collapse
Affiliation(s)
- Brittany P Gordon
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Frederick G Moore
- Department of Physics , Whitman College , Walla Walla , Washington 99362 , United States
| | - Lawrence F Scatena
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Nicholas A Valley
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Science and Mathematics , California Northstate University College of Health Sciences , Rancho Cordova , California 95670 , United States
| | - Sumi N Wren
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Air Quality Process Research , Environment and Climate Change Canada (ECCC) , Toronto , Ontario M3H 5T4 , Canada
| | - Geraldine L Richmond
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|