1
|
Fujii Y, Ioka H, Minamoto C, Kurisaki I, Tanaka S, Ohta K, Tominaga K. Vibrational frequency fluctuations of poly(N,N-diethylacrylamide) in the vicinity of coil-to-globule transition studied by two-dimensional infrared spectroscopy and molecular dynamics simulations. J Chem Phys 2024; 161:064903. [PMID: 39120037 DOI: 10.1063/5.0218180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Poly(N,N-diethylacrylamide) (PdEA), one of the thermoresponsive polymers, in aqueous solutions has attracted much attention because of its characteristic properties, such as coil-to-globule (CG) transition. We performed two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to understand the hydration dynamics in the vicinity of the CG transition at the molecular level via vibrational frequency fluctuations of the carbonyl stretching modes in the side chains of PdEA. Furthermore, N,N-diethylpropionamide, a repeating monomer unit of PdEA, is also investigated for comparison. From decays of the frequency-frequency time correlation functions (FFTCFs) of the carbonyl stretching modes, we consider that inhomogeneity of the hydration environments originates from various backbone configurations of PdEA. The degree of the inhomogeneity depends on temperature. Hydration water molecules near the carbonyl groups are influenced by the confinements of the polymers. The restricted reorientation of the embedded water, the local torsions of the backbone, and the rearrangement of the whole structure contribute to the slow spectral diffusion. By performing MD simulations, we calculated the FFTCFs and dynamical quantities, such as fluctuations of the dihedral angles of the backbone and the orientation of the hydration water molecules. The simulated FFTCFs match well with the experimental results, indicating that the retarded water reorientations via the excluded volume effect play an important role in the vibrational frequency fluctuations of the carbonyl stretching mode. It is also found the embedded water molecules are influenced by the local torsions of the backbone structure within the time scales of the spectral diffusion.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Hikaru Ioka
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Chihiro Minamoto
- Department of Applied Chemistry and Biotechnology, Niihama National College of Technology, Yakumo-cho 7-1, Niihama, Ehime 792-8580, Japan
| | - Ikuo Kurisaki
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Kaoru Ohta
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| | - Keisuke Tominaga
- Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Lorenz-Ochoa KA, Baiz CR. Ultrafast Spectroscopy Reveals Slow Water Dynamics in Biocondensates. J Am Chem Soc 2023; 145:27800-27809. [PMID: 38061016 DOI: 10.1021/jacs.3c10862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Cells achieve high spatiotemporal control over biochemical processes through compartmentalization to membrane-bound as well as membraneless organelles that assemble by liquid-liquid phase separation. Characterizing the balance of forces within these environments is essential to understanding their stability and function, and water is an integral part of the condensate, playing an important role in mediating electrostatic and hydrogen-bonding interactions. Here, we investigate the ultrafast, picosecond hydrogen-bond dynamics of a model biocondensate consisting of a peptide poly-l-arginine (Poly-R) and the nucleic acid adenosine monophosphate (AMP) using coherent two-dimensional infrared (2D IR) spectroscopy. We investigated three vibrational modes: the arginine side-chain C═N stretches, an AMP ring mode, and the amide backbone carbonyl stretching modes. Dynamics slow considerably between the dilute phase and the condensate phase for each vibrational probe. For example, the arginine side-chain C═N modes slow from 0.38 to 2.26 ps due to strong electrostatic interactions. All-atom molecular dynamics simulations provide an atomistic interpretation of the H-bond network disruption resulting from electrostatic contributions as well as collapse within the condensate. Simulations predict that a fraction of water molecules are highly constrained within the condensate, explaining the observed slowdown in the H-bond dynamics.
Collapse
Affiliation(s)
- Keegan A Lorenz-Ochoa
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Yang J, Cong Y, Li Y, Li H. Machine Learning Approach Based on a Range-Corrected Deep Potential Model for Efficient Vibrational Frequency Computation. J Chem Theory Comput 2023; 19:6366-6374. [PMID: 37652890 DOI: 10.1021/acs.jctc.3c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
As an ensemble average result, vibrational spectrum simulation can be time-consuming with high accuracy methods. We present a machine learning approach based on the range-corrected deep potential (DPRc) model to improve the computing efficiency. The DPRc method divides the system into "probe region" and "solvent region"; "solvent-solvent" interactions are not counted in the neural network. We applied the approach to two systems: formic acid C═O stretching and MeCN C≡N stretching vibrational frequency shifts in water. All data sets were prepared using the quantum vibration perturbation approach. Effects of different region divisions, one-body correction, cut range, and training data size were tested. The model with a single-molecule "probe region" showed stable accuracy; it ran roughly 10 times faster than regular deep potential and reduced the training time by about four. The approach is efficient, easy to apply, and extendable to calculating various spectra.
Collapse
Affiliation(s)
- Jitai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Yang Cong
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - You Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| |
Collapse
|
4
|
Brown SM, Voráček V, Freeland S. What Would an Alien Amino Acid Alphabet Look Like and Why? ASTROBIOLOGY 2023; 23:536-549. [PMID: 37022727 DOI: 10.1089/ast.2022.0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Life on Earth builds genetically encoded proteins by using a standard alphabet of just 20 L-α-amino acids, although many others were available to life's origins and early evolution. To better understand the causes of this foundational evolutionary outcome, we extend previous analyses which have identified a highly unusual distribution of biophysical properties within the set used by life. Specifically, we use a heuristic search algorithm to identify other sets of amino acids, from a library of plausible alternatives, that emulate life's signature. We find that a subset of amino acids seems predisposed to forming such sets. We present other examples of such alphabets under various assumptions, along with analysis and reasoning about why each might be simplistic. We do so to introduce the central, open question that remains: while fundamental biophysics related to protein folding can potentially reduce a library of 1054 possible amino acid alphabets by 7 orders of magnitude, the framework of assumptions that does so leaves a further 1045 possibilities. It is therefore tempting to ask what additional assumptions can further reduce these 45 orders of magnitude? We thus conclude with a focus on library and alphabet construction as a useful target for subsequent research that may help future science speak with more confidence about what an alien amino acid alphabet would look like and why.
Collapse
Affiliation(s)
- Sean M Brown
- Department of Biological Sciences, University of Maryland, Baltimore County, Maryland, USA
| | - Václav Voráček
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Stephen Freeland
- Department of Biological Sciences, University of Maryland, Baltimore County, Maryland, USA
| |
Collapse
|
5
|
Masaya TW, Goulay F. A Molecular Dynamic Study of the Effects of Surface Partitioning on the OH Radical Interactions with Solutes in Multicomponent Aqueous Aerosols. J Phys Chem A 2023; 127:751-764. [PMID: 36639126 DOI: 10.1021/acs.jpca.2c07419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The surface-bulk partitioning of small saccharide and amide molecules in aqueous droplets was investigated using molecular dynamics. The air-particle interface was modeled using a 80 Å cubic water box containing a series of organic molecules and surrounded by gaseous OH radicals. The properties of the organic solutes within the interface and the water bulk were examined at a molecular level using density profiles and radial pair distribution functions. Molecules containing only polar functional groups such as urea and glucose are found predominantly in the water bulk, forming an exclusion layer near the water surface. Substitution of a single polar group by an alkyl group in sugars and amides leads to the migration of the molecule toward the interface. Within the first 2 nm from the water surface, surface-active solutes lose their rotational freedom and adopt a preferred orientation with the alkyl group pointing toward the surface. The different packing within the interface leads to different solvation shell structures and enhanced interaction between the organic molecules and absorbed OH radicals. The simulations provide quantitative information about the dimension, composition, and organization of the air-water interface as well as about the nonreactive interaction of the OH radicals with the organic solutes. It suggests that increased concentrations, preferred orientations, and decreased solvation near the air-water surface may lead to differences in reactivities between surface-active and surface-inactive molecules. The results are important to explain how heterogeneous oxidation mechanisms and kinetics within interfaces may differ from those of the bulk.
Collapse
Affiliation(s)
- Tadini Wenyika Masaya
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| | - Fabien Goulay
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States
| |
Collapse
|
6
|
Donaldson PM. Spectrophotometric Concentration Analysis Without Molar Absorption Coefficients by Two-Dimensional-Infrared and Fourier Transform Infrared Spectroscopy. Anal Chem 2022; 94:17988-17999. [PMID: 36516397 PMCID: PMC9798376 DOI: 10.1021/acs.analchem.2c04287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
A spectrophotometric method for determining relative concentrations of infrared (IR)-active analytes with unknown concentration and unknown molar absorption coefficient is explored. This type of method may be useful for the characterization of complex/heterogeneous liquids or solids, the study of transient species, and for other scenarios where it might be difficult to gain concentration information by other means. Concentration ratios of two species are obtained from their IR absorption and two-dimensional (2D)-IR diagonal bleach signals using simple ratiometric calculations. A simple calculation framework for deriving concentration ratios from spectral data is developed, extended to IR-pump-probe signals, and applied to the calculation of transition dipole ratios. Corrections to account for the attenuation of the 2D-IR signal caused by population relaxation, spectral overlap, wavelength-dependent pump absorption, inhomogeneous broadening, and laser intensity variations are described. A simple formula for calculating the attenuation of the 2D-IR signal due to sample absorption is deduced and by comparison with 2D-IR signals at varying total sample absorbance found to be quantitatively accurate. 2D-IR and Fourier transform infrared spectroscopy of two carbonyl containing species acetone and N-methyl-acetamide dissolved in D2O are used to experimentally confirm the validity of the ratiometric calculations. Finally, to address ambiguities over units and scaling of 2D-IR signals, a physical unit of 2D-IR spectral amplitude in mOD/c m - 1 is proposed.
Collapse
Affiliation(s)
- Paul M. Donaldson
- Central Laser Facility, RCaH, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, DidcotOX11 0QX, U.K.
| |
Collapse
|
7
|
Complex investigation of H-bond in Water-N-methylacetamide system: Volumetric properties, DFT, IR, MD analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Guo Y, Yang C, Jia C, Guo X. Accurate Single-Molecule Indicator of Solvent Effects. JACS AU 2021; 1:2271-2279. [PMID: 34977898 PMCID: PMC8715489 DOI: 10.1021/jacsau.1c00400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 05/04/2023]
Abstract
The study of the microscopic structure of solvents is of significant importance for deciphering the essential solvation in chemical reactions and biological processes. Yet conventional technologies, such as neutron diffraction, have an inherent averaging effect as they analyze a group of molecules. In this study, we report a method to analyze the microstructure and interaction in solvents from a single-molecule perspective. A single-molecule electrical nanocircuit is used to directly analyze the dynamic microscopic structure of solvents. Through a single-molecule model reaction, the heterogeneity or homogeneity of solvents is precisely detected at the molecular level. Both the thermodynamics and the kinetics of the model reaction demonstrate the microscopic heterogeneity of alcohol-water and alcohol-n-hexane solutions and the microscopic homogeneity of alcohol-carbon tetrachloride solutions. In addition, a real-time event spectroscopy has been developed to study the dynamic characteristics of the segregated phase and the internal intermolecular interaction in microheterogeneous solvents. The development of such a unique high-resolution indicator with single-molecule and single-event accuracy provides infinite opportunities to decipher solvent effects in-depth and optimizes chemical reactions and biological processes in solution.
Collapse
Affiliation(s)
- Yilin Guo
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Beijing National Laboratory for Molecular Sciences, National Biomedical
Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chen Yang
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Beijing National Laboratory for Molecular Sciences, National Biomedical
Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chuancheng Jia
- Center
of Single-Molecule Sciences, Frontiers Science Center for New Organic
Matter, Institute of Modern Optics, College of Electronic Information
and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Beijing National Laboratory for Molecular Sciences, National Biomedical
Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Center
of Single-Molecule Sciences, Frontiers Science Center for New Organic
Matter, Institute of Modern Optics, College of Electronic Information
and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Cong Y, Zhai Y, Yang J, Grofe A, Gao J, Li H. Quantum vibration perturbation approach with polyatomic probe in simulating infrared spectra. Phys Chem Chem Phys 2021; 24:1174-1182. [PMID: 34932049 DOI: 10.1039/d1cp04490g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The quantitative prediction of vibrational spectra of chromophore molecules in solution is challenging and numerous methods have been developed. In this work, we present a quantum vibration perturbation (QVP) approach, which is a procedure that combines molecular quantum vibration and molecular dynamics with perturbation theory. In this framework, an initial Newtonian molecular dynamics simulation is performed, followed by a substitution process to embed molecular quantum vibrational wave functions into the trajectory. The instantaneous vibrational frequency shift at each time step is calculated using the Rayleigh-Schrödinger perturbation theory, where the perturbation operator is the difference in the vibrational potential between the reference chromophore and the perturbed chromophore in the environment. Semi-classical statistical mechanics is employed to obtain the spectral lineshape function. We validated our method using HCOOH·nH2O (n = 1-2) clusters and HCOOH aqueous solution as examples. The QVP method can be employed for rapid prediction of the vibrational spectrum of a specific mode in solution.
Collapse
Affiliation(s)
- Yang Cong
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Jitai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Adam Grofe
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN 55455, USA. .,Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People's Republic of China.
| |
Collapse
|
10
|
Abstract
Aqueous cosolvent systems (ACoSs) are mixtures of small polar molecules such as amides, alcohols, dimethyl sulfoxide, or ions in water. These liquids have been the focus of fundamental studies due to their complex intermolecular interactions as well as their broad applications in chemistry, medicine, and materials science. ACoSs are fully miscible at the macroscopic level but exhibit nanometer-scale spatial heterogeneity. ACoSs have recently received renewed attention within the chemical physics community as model systems to explore the relationship between intermolecular interactions and microscopic liquid-liquid phase separation. In this perspective, we provide an overview of ACoS spatial segregation, dynamic heterogeneity, and multiscale relaxation dynamics. We describe emerging approaches to characterize liquid microstructure, H-bond networks, and dynamics using modern experimental tools combined with molecular dynamics simulations and network-based analysis techniques.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 19104, USA
| |
Collapse
|
11
|
Stasiulewicz M, Panuszko A, Śmiechowski M, Bruździak P, Maszota P, Stangret J. Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Gobeze HB, Ma J, Leonik FM, Kuroda DG. Bottom-Up Approach to Assess the Molecular Structure of Aqueous Poly( N-Isopropylacrylamide) at Room Temperature via Infrared Spectroscopy. J Phys Chem B 2020; 124:11699-11710. [PMID: 33306373 PMCID: PMC7872429 DOI: 10.1021/acs.jpcb.0c08424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The structure of poly(N-isopropylacrylamide) (PNIPAM) in solution is still an unresolved topic. Here, the PNIPAM structure in water was investigated using a bottom-up approach, involving the monomer, dimer, and trimer, and a combination of infrared (IR) spectroscopies as well as molecular dynamics simulations. The experiments show that the monomer and oligomers exhibit a broad and asymmetric amide I band with two underlying transitions, while PNIPAM presents the same major transitions and a minor one. Analysis of the 2D IR spectra and theoretical modeling of the amide I band indicates that the two transitions of the monomer do not have the same molecular origin as the oligomers and the polymer. In the monomer, the two bands originate from the ultrafast rotation of its ethyl group, which leads to different solvation structures for the various rotational conformers. In the case of the oligomers, the asymmetry and splitting of the amide I band is caused by the vibrational coupling among adjacent amide side chains. Moreover, it is deduced from the simulations that the oligomers have three distinct backbone conformations for neighboring amides. In particular, two of the backbone conformations have a closed and compact structure, while in the third, the backbone is open and elongated. The bottom-up approach allowed us to infer that such backbone conformations exist in PNIPAM as well. Consequently, the two major amide I transitions of the polymer are also assigned to split amide I transitions resulting from the vibrationally coupled nearest-neighboring amides. In contrast, the additional minor transition observed in PNIPAM is assigned to unsolvated amide units of the polymer. The proposed molecular model successfully describes that PNIPAM amide I band changes with temperature in terms of its molecular structure. This new model strongly suggests that PNIPAM does not have a completely random backbone structure, but has distinct backbone conformers between neighboring amides.
Collapse
Affiliation(s)
- Habtom B Gobeze
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jianbo Ma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fedra M Leonik
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
14
|
Roeters SJ, Sawall M, Eskildsen CE, Panman MR, Tordai G, Koeman M, Neymeyr K, Jansen J, Smilde AK, Woutersen S. Unraveling VEALYL Amyloid Formation Using Advanced Vibrational Spectroscopy and Microscopy. Biophys J 2020; 119:87-98. [PMID: 32562617 DOI: 10.1016/j.bpj.2020.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Intermediate species are hypothesized to play an important role in the toxicity of amyloid formation, a process associated with many diseases. This process can be monitored with conventional and two-dimensional infrared spectroscopy, vibrational circular dichroism, and optical and electron microscopy. Here, we present how combining these techniques provides insight into the aggregation of the hexapeptide VEALYL (Val-Glu-Ala-Leu-Tyr-Leu), the B-chain residue 12-17 segment of insulin that forms amyloid fibrils (intermolecularly hydrogen-bonded β-sheets) when the pH is lowered below 4. Under such circumstances, the aggregation commences after approximately an hour and continues to develop over a period of weeks. Singular value decompositions of one-dimensional and two-dimensional infrared spectroscopy spectra indicate that intermediate species are formed during the aggregation process. Multivariate curve resolution analyses of the one and two-dimensional infrared spectroscopy data show that the intermediates are more fibrillar and deprotonated than the monomers, whereas they are less ordered than the final fibrillar structure that is slowly formed from the intermediates. A comparison between the vibrational circular dichroism spectra and the scanning transmission electron microscopy and optical microscope images shows that the formation of mature fibrils of VEALYL correlates with the appearance of spherulites that are on the order of several micrometers, which give rise to a "giant" vibrational circular dichroism effect.
Collapse
Affiliation(s)
- Steven J Roeters
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Mathias Sawall
- Institut für Mathematik, Universität Rostock, Rostock, Germany
| | - Carl E Eskildsen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthijs R Panman
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Gergely Tordai
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Mike Koeman
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Klaus Neymeyr
- Institut für Mathematik, Universität Rostock, Rostock, Germany; Leibniz-Institut für Katalyse, Rostock, Germany
| | - Jeroen Jansen
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Age K Smilde
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Chen X, Cui Y, Gobeze HB, Kuroda DG. Assessing the Location of Ionic and Molecular Solutes in a Molecularly Heterogeneous and Nonionic Deep Eutectic Solvent. J Phys Chem B 2020; 124:4762-4773. [PMID: 32421342 PMCID: PMC7304071 DOI: 10.1021/acs.jpcb.0c02482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Deep
eutectic solvents (DES) are emerging sustainable designer
solvents viewed as greener and better alternatives to ionic liquids.
Nonionic DESs possess unique properties such as viscosity and hydrophobicity
that make them desirable in microextraction applications such as oil-spill
remediation. This work builds upon a nonionic DES, NMA–LA DES,
previously designed by our group. The NMA–LA DES presents a
rich nanoscopic morphology that could be used to allocate solutes
of different polarities. In this work, the possibility of solvating
different solutes within the nanoscopically heterogeneous molecular
structure of the NMA–LA DES is investigated using ionic and
molecular solutes. In particular, the localized vibrational transitions
in these solutes are used as reporters of the DES molecular structure
via vibrational spectroscopy. The FTIR and 2DIR data suggest that
the ionic solute is confined in a polar and continuous domain formed
by NMA, clearly sensing the direct effect of the change in NMA concentration.
In the case of the molecular nonionic and polar solute, the data indicates
that the solute resides in the interface between the polar and nonpolar
domains. Finally, the results for the nonpolar and nonionic solute
(W(CO)6) are unexpected and less conclusive. Contrary to
its polarity, the data suggest that the W(CO)6 resides
within the NMA polar domain of the DES, probably by inducing a domain
restructuring in the solvent. However, the data are not conclusive
enough to discard the possibility that the restructuring comprises
not only the polar domain but also the interface. Overall, our results
demonstrate that the NMA–LA DES has nanoscopic domains with
affinity to particular molecular properties, such as polarity. Thus,
the presented results have a direct implication to separation science.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Habtom B Gobeze
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
16
|
Oh KI, You X, Flanagan JC, Baiz CR. Liquid-Liquid Phase Separation Produces Fast H-Bond Dynamics in DMSO-Water Mixtures. J Phys Chem Lett 2020; 11:1903-1908. [PMID: 32069416 DOI: 10.1021/acs.jpclett.0c00378] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid-liquid phase separation is common in complex mixtures, but the behavior of nanoconfined liquids is poorly understood from a physical perspective. Dimethyl sulfoxide (DMSO) is an amphiphilic molecule with unique concentration-dependent bulk properties in mixtures with water. Here, we use ultrafast two-dimensional infrared (2D IR) spectroscopy to measure the H-bond dynamics of two probe molecules with different polarities: formamide (FA) and dimethylformamide (DMF). Picosecond H-bond dynamics are fastest in the intermediate concentration regime (20-50 mol % DMSO), because such confined water exhibits bulk-like dynamics. Each vibrational probe experiences a unique microscopic environment as a result of nanoscale phase separation. Molecular dynamics simulations show that the dynamics span multiple time scales, from femtoseconds to nanoseconds. Our studies suggest a previously unknown liquid environment, which we label "local bulk", in which despite the local heterogeneity, the ultrafast H-bond dynamics are similar to bulk water.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Xiao You
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Jennifer C Flanagan
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
17
|
Abstract
Dimethyl sulfoxide (DMSO) water mixtures have been widely studied due to their unique concentration-dependent bulk properties. Here, we present an empirical spectroscopic map for the sulfinyl (S=O) stretching mode. The model can be used to interpret infrared (IR) absorption and ultrafast two-dimensional infrared (2D IR) spectra and quantify hydrogen bond populations and lifetimes by directly connecting spectroscopic measurements with structures and dynamics from molecular dynamics simulations. The electrostatic map is directly parameterized against experimental absorption spectra in the S=O stretching region (980-1100 cm-1) of dilute DMSO in water. A comparison of center peak frequencies shows that the map performs well across the entire DMSO concentration range, accurately reproducing the ∼10 cm-1 red-shift per hydrogen bond observed in the experiments. We further benchmark the map by comparing experimental and simulated 2D IR spectra generated by direct numerical integration of the Schrödinger equation. We expect that this empirical frequency map will provide a quantitative platform for investigating intermolecular interactions, microscopic heterogeneity, and ultrafast dynamics in complex liquid mixtures containing DMSO.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78705, USA
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78705, USA
| |
Collapse
|
18
|
Cui Y, Rushing JC, Seifert S, Bedford NM, Kuroda DG. Molecularly Heterogeneous Structure of a Nonionic Deep Eutectic Solvent Composed of N-Methylacetamide and Lauric Acid. J Phys Chem B 2019; 123:3984-3993. [DOI: 10.1021/acs.jpcb.8b11732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yaowen Cui
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeramie C. Rushing
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Soenke Seifert
- X-ray Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicholas M. Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
19
|
Panuszko A, Nowak M, Bruździak P, Stasiulewicz M, Stangret J. Amides as models to study the hydration of proteins and peptides — spectroscopic and theoretical approach on hydration in various temperatures. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Di Gioacchino M, Bruni F, Ricci MA. N-Methylacetamide Aqueous Solutions: A Neutron Diffraction Study. J Phys Chem B 2019; 123:1808-1814. [PMID: 30739453 DOI: 10.1021/acs.jpcb.9b00246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydration of N-methylacetamide (NMA) in solution has been determined by neutron diffraction with isotopic Hydrogen/Deuterium substitution (NDIS), augmented by Monte Carlo simulation. This study is representative of the hydration of the peptide bonds characteristic of proteins and might shed light on aggregation phenomena in intrinsically disordered proteins. It is found that NMA forms hydrogen bonds with water at both O and H peptide sites, although of different lengths and strengths. The comparison with the case of tripeptide glutathione evidences differences in both hydration and propensity for aggregation.
Collapse
Affiliation(s)
- Michael Di Gioacchino
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Fabio Bruni
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Maria Antonietta Ricci
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| |
Collapse
|
21
|
Ghosh A, Cohn B, Prasad AK, Chuntonov L. Quantifying conformations of ester vibrational probes with hydrogen-bond-induced Fermi resonances. J Chem Phys 2018; 149:184501. [PMID: 30441918 DOI: 10.1063/1.5055041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Solvatochromic shifts of local vibrational probes report on the strength of the surrounding electric fields and the probe's hydrogen bonding status. Stretching vibrational mode of the ester carbonyl group is a popular solvatochromic reporter used in the studies of peptides and proteins. Small molecules, used to calibrate the response of the vibrational probes, sometimes involve Fermi resonances (FRs) induced by inter-molecular interactions. In the present work, we focus on the scenario where FR does not appear in the infrared spectrum of the ester carbonyl stretching mode in aprotic solvents; however, it is intensified when a hydrogen bond with the reporter is established. When two molecules form hydrogen bonds to the same carbonyl oxygen atom, FR leads to strong hybridization of the involved modes and splitting of the absorption peak. Spectral overlap between the Fermi doublets associated with singly and doubly hydrogen-bonded carbonyl groups significantly complicates quantifying different hydrogen-bonded conformations. We employed a combination of linear and third-order (2DIR) infrared spectroscopy with chemometrics analysis to reveal the individual line shapes and to estimate the occupations of the hydrogen-bonded conformations in methyl acetate, a model small molecule. We identified a hydrogen-bond-induced FR in complexes of methyl acetate with alcohols and water and found that FR is lifted in larger molecules used for control experiments-cholesteryl stearate and methyl cyanoacetate. Applying this methodology to analyze acetonitrile-water solutions revealed that when dissolved in neat water, methyl acetate occupies a single hydrogen-bonding conformation, which is in contrast to the conclusions of previous studies. Our approach can be generally used when FRs prevent direct quantification of the hydrogen bonding status of the vibrational probe.
Collapse
Affiliation(s)
- Anup Ghosh
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Bar Cohn
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Amit K Prasad
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
22
|
Biernacki KA, Kaczkowska E, Bruździak P. Aqueous solutions of NMA, Na2HPO4, and NaH2PO4 as models for interaction studies in phosphate–protein systems. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|