• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4602291)   Today's Articles (42)   Subscriber (49368)
For: Li Z, Omidvar N, Chin WS, Robb E, Morris A, Achenie L, Xin H. Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations. J Phys Chem A 2018;122:4571-4578. [DOI: 10.1021/acs.jpca.8b02842] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Number Cited by Other Article(s)
1
Kirschbaum T, von Seggern B, Dzubiella J, Bande A, Noé F. Machine Learning Frontier Orbital Energies of Nanodiamonds. J Chem Theory Comput 2023;19:4461-4473. [PMID: 37053438 DOI: 10.1021/acs.jctc.2c01275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
2
Exploring Deep Learning for Metalloporphyrins: Databases, Molecular Representations, and Model Architectures. Catalysts 2022. [DOI: 10.3390/catal12111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]  Open
3
Balraadjsing S, Peijnenburg WJGM, Vijver MG. Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity. CHEMOSPHERE 2022;307:135930. [PMID: 35961453 DOI: 10.1016/j.chemosphere.2022.135930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
4
Storm FE, Folkmann LM, Hansen T, Mikkelsen KV. Machine learning the frontier orbital energies of SubPc based triads. J Mol Model 2022;28:313. [PMID: 36098806 DOI: 10.1007/s00894-022-05262-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
5
Wang Z, Sun Z, Yin H, Liu X, Wang J, Zhao H, Pang CH, Wu T, Li S, Yin Z, Yu XF. Data-Driven Materials Innovation and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022;34:e2104113. [PMID: 35451528 DOI: 10.1002/adma.202104113] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/19/2022] [Indexed: 05/07/2023]
6
Machine learning for multiscale modeling in computational molecular design. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
7
Nandy A, Duan C, Goffinet C, Kulik HJ. New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts. JACS AU 2022;2:1200-1213. [PMID: 35647589 PMCID: PMC9135396 DOI: 10.1021/jacsau.2c00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 05/03/2023]
8
Shi H, Jing W, Liu W, Li Y, Li Z, Qiao B, Zhao S, Xu Z, Song D. Key Factors Governing the External Quantum Efficiency of Thermally Activated Delayed Fluorescence Organic Light-Emitting Devices: Evidence from Machine Learning. ACS OMEGA 2022;7:7893-7900. [PMID: 35284748 PMCID: PMC8908496 DOI: 10.1021/acsomega.1c06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
9
Miyake Y, Saeki A. Machine Learning-Assisted Development of Organic Solar Cell Materials: Issues, Analyses, and Outlooks. J Phys Chem Lett 2021;12:12391-12401. [PMID: 34939806 DOI: 10.1021/acs.jpclett.1c03526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
10
Ovchenkova EN, Bichan NG, Gostev FE, Shelaev IV, Nadtochenko VA, Lomova TN. The donor-acceptor dyad based on high substituted fullero[70]pyrrolidine-coordinated manganese (III) phthalocyanine for photoinduced electron transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021;263:120166. [PMID: 34274635 DOI: 10.1016/j.saa.2021.120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
11
Duan C, Liu F, Nandy A, Kulik HJ. Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery. J Phys Chem Lett 2021;12:4628-4637. [PMID: 33973793 DOI: 10.1021/acs.jpclett.1c00631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
12
Wang CI, Joanito I, Lan CF, Hsu CP. Artificial neural networks for predicting charge transfer coupling. J Chem Phys 2020;153:214113. [PMID: 33291923 DOI: 10.1063/5.0023697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
13
Eckhoff M, Lausch KN, Blöchl PE, Behler J. Predicting oxidation and spin states by high-dimensional neural networks: Applications to lithium manganese oxide spinels. J Chem Phys 2020;153:164107. [PMID: 33138439 DOI: 10.1063/5.0021452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]  Open
14
Chen MS, Zuehlsdorff TJ, Morawietz T, Isborn CM, Markland TE. Exploiting Machine Learning to Efficiently Predict Multidimensional Optical Spectra in Complex Environments. J Phys Chem Lett 2020;11:7559-7568. [PMID: 32808797 DOI: 10.1021/acs.jpclett.0c02168] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
15
Heinen S, Schwilk M, von Rudorff GF, von Lilienfeld OA. Machine learning the computational cost of quantum chemistry. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab6ac4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
16
Li Z, Achenie LEK, Xin H. An Adaptive Machine Learning Strategy for Accelerating Discovery of Perovskite Electrocatalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05248] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
17
Nguyen DD, Cang Z, Wei GW. A review of mathematical representations of biomolecular data. Phys Chem Chem Phys 2020;22:4343-4367. [PMID: 32067019 PMCID: PMC7081943 DOI: 10.1039/c9cp06554g] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
18
Gao H, Jia M, Chen S, Zhang X, Tan X. Efficient photocatalysts of a tetraphenylporphyrin/P25 hybrid for visible-light photoreduction of CO2. NEW J CHEM 2020. [DOI: 10.1039/d0nj03351k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
19
An Y, Deshmukh SA. Machine learning approach for accurate backmapping of coarse-grained models to all-atom models. Chem Commun (Camb) 2020;56:9312-9315. [PMID: 32667366 DOI: 10.1039/d0cc02651d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
20
Lu Z, Yadav S, Singh CV. Predicting aggregation energy for single atom bimetallic catalysts on clean and O* adsorbed surfaces through machine learning models. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02070e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Wang CI, Braza MKE, Claudio GC, Nellas RB, Hsu CP. Machine Learning for Predicting Electron Transfer Coupling. J Phys Chem A 2019;123:7792-7802. [PMID: 31429287 DOI: 10.1021/acs.jpca.9b04256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Nandy A, Zhu J, Janet JP, Duan C, Getman RB, Kulik HJ. Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02165] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
23
Back S, Tran K, Ulissi ZW. Toward a Design of Active Oxygen Evolution Catalysts: Insights from Automated Density Functional Theory Calculations and Machine Learning. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02416] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
An Y, Singh S, Bejagam KK, Deshmukh SA. Development of an Accurate Coarse-Grained Model of Poly(acrylic acid) in Explicit Solvents. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
25
Singh SK, Bejagam KK, An Y, Deshmukh SA. Machine-Learning Based Stacked Ensemble Model for Accurate Analysis of Molecular Dynamics Simulations. J Phys Chem A 2019;123:5190-5198. [DOI: 10.1021/acs.jpca.9b03420] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
26
Advances of machine learning in molecular modeling and simulation. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
27
Nandy A, Duan C, Janet JP, Gugler S, Kulik HJ. Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04015] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA