1
|
Dang J, Li M, Fang W, Wu Y, Xin S, Cao Y, Zhao H. Amorphous amEu-NH 2BDC and amTb-NH 2BDC as ratio fluorescence probes for smartphone-integrated naked eye detection of bacillus anthracis biomarker. Talanta 2024; 267:125164. [PMID: 37734290 DOI: 10.1016/j.talanta.2023.125164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
The abnormal concentration of anthrax spore biomarker 2,6-pyridinedicarboxylic acid (2,6-DPA) will seriously affect public health. Therefore, a sensitive and rapid assay for 2,6-DPA monitoring is of vital importance. In this work, novel nano-sized amorphous Eu-NH2BDC (amEu-NH2BDC) and amorphous Tb-NH2BDC (amTb-NH2BDC) metal organic frameworks are prepared by adjusting the ratio of metal and ligand, respectively. Both of them exhibit highly sensitive and selective ratiometric fluorescence detection for 2,6-DPA with wider linear range and lower detection limit in aqueous solutions and human serum. Attributed to the coordination effect of 2,6-DPA in triggering the characteristic fluorescence emissions of Eu3+or Tb3+ by replacing coordinated solvent molecules, as evidenced by ultraviolet-visible spectroscopy, the fluorescence lifetimes analysis, thermal gravimetric analysis, Fourier-transform infrared spectroscopy, density functional theory (DFT) simulations and X-ray photoelectron spectroscopy. In addition, the amEu-NH2BDC or amTb-NH2BDC loaded paper-based microsensors are constructed for real-time and sensitive detection of 2,6-DPA and coupled with a smartphone-assisted visual portable device.
Collapse
Affiliation(s)
- Jiaqi Dang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Min Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Wenhui Fang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Ying Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Shixian Xin
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Yutao Cao
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China
| | - Hong Zhao
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A YuQuan Road, Beijing, 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, 256606, Shandong Province, PR China.
| |
Collapse
|
2
|
How formaldehyde affects the thermo-oxidative and photo-oxidative mechanism of polypropylene: A DFT/TD-DFT study. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Yu L, Feng L, Xiong L, Li S, Wang S, Wei Z, Xiao Y. Portable visual assay of Bacillus anthracis biomarker based on ligand-functionalized dual-emission lanthanide metal-organic frameworks and smartphone-integrated mini-device. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128914. [PMID: 35452990 DOI: 10.1016/j.jhazmat.2022.128914] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
A single-functionalized ligand single-Ln3+ based dual-emission Ln-MOF fluorescent sensor was established for portable and visual dipicolinic acid (DPA, Bacillus anthracis biomarker) detection. First, a theory calculation-based prediction model was developed for designing single-functionalized ligand single-Ln3+ dual-emission Ln-MOFs. The model consisted of three calculation modules: intramolecular hydrogen bonds, excited state energy levels, and coordination stability with Ln3+ of ligands. Tb3+ and Eu3+ were selected as metal luminescence centers, PTA-X (PTA: p-phthalic acid, X = NH2, CH3, H, OH) with different functional groups as one-step functionalization ligands, and the luminescent feature of four Tb-MOFs and four Eu-MOFs was predicted with the model. Coupled with prediction results and experimental verification results, Tb-PTA-OH was rapidly determined to be the sole dual-emission Ln-MOF. Then, Tb-PTA-OH was applied to DPA detection by ratiometric fluorescence, and an ultra-low limit of detection (13.4 nM) was obtained, which is much lower than the lowest anthrax infectious dose (60 μM). A portable visual assay method based on paper-microchip and smartphone integrated mini-device was further established (limit of qualification 0.48 μM). A new sensing mechanism and a "triple gates" selectivity mechanism to DPA were proposed. This work reveals guidelines for material design and mini-device customization in detecting hazardous substances.
Collapse
Affiliation(s)
- Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Lixiang Feng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Li Xiong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Shuo Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Zhongyu Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan 430071, China.
| |
Collapse
|
4
|
Optical Spectra of Oligofurans: A Theoretical Approach to the Transition Energies, Reorganization Energies, and the Vibronic Activity. Molecules 2021; 26:molecules26237163. [PMID: 34885747 PMCID: PMC8659192 DOI: 10.3390/molecules26237163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
There is experimental evidence of high vibronic activity that accompanies the allowed transition between the ground state and the lowest electronic singlet excited state of oligofurans that contain two, three, and four furan rings. The absorption and emission spectra of the three lowest oligofurans measured at liquid nitrogen temperature show distinct fine structures that are reproduced using the projection-based model of vibronic coupling (with Dushinsky rotation included) parameterized utilizing either Density Functional Theory (DFT, with several different exchange-correlation functionals) or ab initio (CC2) quantum chemistry calculations. Using as a reference the experimental data concerning the electronic absorption and fluorescence for the eight lowest oligofurans, we first analyzed the performance of the exchange-correlation functionals for the electronic transition energies and the reorganization energies. Subsequently, we used the best functionals alongside with the CC2 method to explore how the reorganization energies are distributed among the totally symmetric vibrations, identify the normal modes that dominate in the fine structures present in the absorption and emission bands, and trace their evolution with the increasing number of rings in the oligofuran series. Confrontation of the simulated spectra with the experiment allows for the verification of the performance of the selected DFT functionals and the CC2 method.
Collapse
|
5
|
Blodgett KN, Fischer JL, Zwier TS, Sibert EL. The missing NH stretch fundamental in S 1 methyl anthranilate: IR-UV double resonance experiments and local mode theory. Phys Chem Chem Phys 2020; 22:14077-14087. [PMID: 32568351 DOI: 10.1039/d0cp01916j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The infrared spectra of jet-cooled methyl anthranilate (MA) and the MA-H2O complex are reported in both S0 and S1 states, recorded using fluorescence-dip infrared (FDIR) spectroscopy under jet-cooled conditions. Using a combination of local mode CH stretch modeling and scaled harmonic vibrational character, a near-complete assignment of the infrared spectra is possible over the 1400-3700 cm-1 region. While the NH stretch fundamentals are easily observed in the S0 spectrum, in the S1 state, the hydrogen bonded NH stretch shift is not readily apparent. Scaled harmonic calculations predict this fundamental at just below 2900 cm-1 with an intensity around 400 km mol-1. However, the experimental spectrum shows no evidence of this transition. A local mode theory is developed in which the NH stretch vibration is treated adiabatically. Minimizing the energy of the corresponding stretch state with one quantum of excitation leads to a dislocation of the H atom where there is equal sharing between N and O atoms. The sharing occurs as a result of significant molecular arrangement due to strong coupling of this NH stretch to other internal degrees of freedom and in particular to the contiguous HNC bend. A two-dimensional model of the coupling between the NH stretch and this bend highlights important nonlinear effects that are not captured by low order vibrational perturbation theory. In particular, the model predicts a dramatic dilution of the NH stretch oscillator strength over many transitions spread over more than 1000 cm-1, making it difficult to observe experimentally.
Collapse
Affiliation(s)
- Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.
| | | | | | | |
Collapse
|
6
|
Blodgett KN, Sun D, Fischer JL, Sibert EL, Zwier TS. Vibronic spectroscopy of methyl anthranilate and its water complex: hydrogen atom dislocation in the excited state. Phys Chem Chem Phys 2019; 21:21355-21369. [PMID: 31531502 DOI: 10.1039/c9cp04556b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Laser-induced fluorescence (LIF) excitation, dispersed fluorescence (DFL), UV-UV-hole burning, and UV-depletion spectra have been collected on methyl anthranilate (MA, methyl 2-aminobenzoate) and its water-containing complex (MA-H2O), under jet-cooled conditions in the gas phase. As a close structural analog of a sunscreen agent, MA has a strong absorption due to the S0-S1 transition that begins in the UV-A region, with the electronic origin at 28 852 cm-1 (346.6 nm). Unlike most sunscreens that have fast non-radiative pathways back to the ground state, MA fluoresces efficiently, with an excited state lifetime of 27 ns. Relative to methyl benzoate, inter-system crossing to the triplet manifold is shut off in MA by the strong intramolecular NHO[double bond, length as m-dash]C H-bond, which shifts the 3nπ* state well above the 1ππ* S1 state. Single vibronic level DFL spectra are used to obtain a near-complete assignment of the vibronic structure in the excited state. Much of the vibrational structure in the excitation spectrum is Franck-Condon activity due to three in-plane vibrations that modulate the distance between the NH2 and CO2Me groups, ν33 (421 cm-1), ν34 (366 cm-1), and ν36 (179 cm-1). Based on the close correspondence between experiment and theory at the TD-DFT B3LYP-D3BJ/def2TZVP level of theory, the major structural changes associated with electronic excitation are evaluated, leading to the conclusion that the major motion is a reorientation and constriction of the 6-membered H-bonded ring closed by the intramolecular NHO[double bond, length as m-dash]C H-bond. This leads to a shortening of the NHO[double bond, length as m-dash]C H-bond distance from 1.926 Å to 1.723 Å, equivalent to about a 25% reduction in the HO distance compared to full H-atom transfer. As a result, the excited state process near the S1 origin is a hydrogen atom dislocation that is brought about primarily by heavy atom motion, since the shortened H-bond distance results from extensive heavy-atom motion, with only a 0.03 Å increase in the NH bond length relative to its ground state value.
Collapse
Affiliation(s)
- Karl N Blodgett
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Joshua L Fischer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| | - Edwin L Sibert
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Timothy S Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|