1
|
Li Y, Li Q, Gillilan RE, Abbaspourrad A. Reversible disassembly-reassembly of C-phycocyanin in pressurization-depressurization cycles of high hydrostatic pressure. Int J Biol Macromol 2023; 253:127623. [PMID: 37879586 PMCID: PMC10842036 DOI: 10.1016/j.ijbiomac.2023.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Hydrostatic pressure can reversibly modulate protein-protein and protein-chromophore interactions of C-phycocyanin (C-PC) from Spirulina platensis. Small-angle X-ray scattering combined with UV-Vis spectrophotometry and protein modeling was used to explore the color and structural changes of C-PC under high pressure conditions at different pH levels. It was revealed that pressures up to 350 MPa were enough to fully disassemble C-PC from trimers to monomers at pH 7.0, or from monomers to detached subunits at pH 9.0. These disassemblies were accompanied by protein unfolding that caused these high-pressure induced structures to be more extended. These changes were reversible following depressurization. The trimer-to-monomer transition proceeded through a collection of previously unrecognized, L-shaped intermediates resembling C-PC dimers. Additionally, pressurized C-PC showed decayed Q-band absorption and fortified Soret-band absorption. This was evidence that the folded tetrapyrroles, which had folded at ambient pressure, formed semicyclic unfolded conformations at a high pressure. Upon depressurization, the peak intensity and shift all recovered stepwise, showing pressure can precisely manipulate C-PC's structure as well as its color. Overall, a protein-chromophore regulatory theory of C-PC was unveiled. The pressure-tunability could be harnessed to modify and stabilize C-PC's structure and photochemical properties for designing new delivery and optical materials.
Collapse
Affiliation(s)
- Ying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Qike Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (MacCHESS), Cornell University, Ithaca, NY, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Buguis FL, Hsu NSY, Sirohey SA, Adam MC, Goncharova LV, Gilroy JB. Dyads and Triads of Boron Difluoride Formazanate and Boron Difluoride Dipyrromethene Dyes. Chemistry 2023; 29:e202302548. [PMID: 37725661 DOI: 10.1002/chem.202302548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Dye-dye conjugates have attracted significant interest for their utility in applications such as bioimaging, theranostics, and light-harvesting. Many classes of organic dyes have been employed in this regard; however, building blocks don't typically extend beyond small chromophores. This can lead to minor changes to the optoelectronic properties of the original dye. The exploration of dye-dye structures is impeded by long synthetic routes, incompatible synthetic conditions, or a mismatch of the desired properties. Here, we present the first-of-their-kind dye-dye conjugates of boron difluoride complexes of formazanate and dipyrromethene ligands. These conjugates exhibit dual photoluminescence bands that reach the near-infrared spectral region and implicate anti-Kasha processes. Cyclic voltammetry experiments revealed the generation of polyanionic species that can reversibly tolerate the uptake of up to 6 electrons. Ultimately, we demonstrate that BF2 formazanates can serve as a synthetically accessible platform to build upon new classes of dye-dye conjugates.
Collapse
Affiliation(s)
- Francis L Buguis
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Nathan Sung Y Hsu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Sofia A Sirohey
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Matheus C Adam
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Lyudmila V Goncharova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| |
Collapse
|
3
|
Garcia-Orrit S, Vega-Mayoral V, Chen Q, Serra G, Paternò GM, Cánovas E, Narita A, Müllen K, Tommasini M, Cabanillas-González J. Nanographene-Based Decoration as a Panchromatic Antenna for Metalloporphyrin Conjugates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301596. [PMID: 37329205 DOI: 10.1002/smll.202301596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Porphyrins, a type of heterocyclic aromatic compounds consisting of tetrapyrroles connected by four substituted methine groups, are appealing building blocks for solar energy applications. However, their photosensitization capability is limited by their large optical energy gap, which results in a mismatch in absorption toward efficient harvesting of the solar spectrum. Porphyrin π-extension by edge-fusing with nanographenes can be employed for narrowing their optical energy gap from 2.35 to 1.08 eV, enabling the development of porphyrin-based panchromatic dyes with an optimized energy onset for solar energy conversion in dye-sensitized solar fuel and solar cell configurations. By combining time-dependent density functional theory with fs transient absorption spectroscopy, it is found that the primary singlets, which are delocalized across the entire aromatic part, are transferred into metal centred triplets in only 1.2 ps; and subsequently, relax toward ligand-delocalized triplets. This observation implies that the decoration of the porphyrin moiety with nanographenes, while having a large impact on the absorption onset of the novel dye, promotes the formation of a ligand-centred lowest triplet state of large spatial extension, potentially interesting for boosting interactions with electron scavengers. These results reveal a design strategy for broadening the applicability of porphyrin-based dyes in optoelectronics.
Collapse
Affiliation(s)
- Saül Garcia-Orrit
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Victor Vega-Mayoral
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Qiang Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gianluca Serra
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Giuseppe M Paternò
- Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano, 20133, Italy
| | - Enrique Cánovas
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Juan Cabanillas-González
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, c/Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
4
|
Roy A, Magdaong NCM, Jing H, Rong J, Diers JR, Kang HS, Niedzwiedzki DM, Taniguchi M, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Balancing Panchromatic Absorption and Multistep Charge Separation in a Compact Molecular Architecture. J Phys Chem A 2022; 126:9353-9365. [PMID: 36508586 DOI: 10.1021/acs.jpca.2c06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A panchromatic triad and a charge-separation unit are joined in a crossbar architecture to capture solar energy. The panchromatic-absorber triad (T) is comprised of a central free-base porphyrin that is strongly coupled via direct ethyne linkages to two perylene-monoimide (PMI) groups. The charge-separation unit incorporates a free-base or zinc chlorin (C or ZnC) as a hole acceptor (or electron donor) and a perylene-diimide (PDI) as an electron acceptor, both attached to the porphyrin via diphenylethyne linkers. The free-base porphyrin is common to both light-harvesting and charge-separation motifs. The chlorin and PDI also function as ancillary light absorbers, complementing direct excitation of the panchromatic triad to produce the discrete lowest excited state of the array (T*). Attainment of full charge separation across the pentad entails two steps: (1) an initial excited-state hole/electron-transfer process to oxidize the chlorin (and reduce the panchromatic triad) or reduce the PDI (and oxidize the panchromatic triad); and (2) subsequent ground-state electron/hole migration to produce oxidized chlorin and reduced PDI. Full charge separation for pentad ZnC-T-PDI to generate ZnC+-T-PDI- occurs with a quantum yield of ∼30% and mean lifetime ∼1 μs in dimethyl sulfoxide. For C-T-PDI, initial charge separation is followed by rapid charge recombination. The molecular designs and studies reported here reveal the challenges of balancing the demands for charge separation (linker length and composition, excited-state energies, redox potentials, and medium polarity) with the constraints for panchromatic absorption (strong electronic coupling of the porphyrin and two PMI units) for integrated function in solar-energy conversion.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Washington University, St. Louis, St. Louis, Missouri 63130-4889, United States
| | - Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, St. Louis, Missouri 63130-4889, United States
| | - Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jie Rong
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Hyun Suk Kang
- Department of Chemistry, Washington University, St. Louis, St. Louis, Missouri 63130-4889, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, St. Louis, Missouri 63130-4889, United States
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, St. Louis, Missouri 63130-4889, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
5
|
Mariñas V, Platzer B, Labella J, Caroleo F, Nardis S, Paolesse R, Guldi DM, Torres T. Controlling Electronic Events Through Rational Structural Design in Subphthalocyanine-Corrole Dyads: Synthesis, Characterization, and Photophysical Properties. Chemistry 2022; 28:e202201552. [PMID: 35862831 PMCID: PMC9804354 DOI: 10.1002/chem.202201552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/05/2023]
Abstract
Porphyrinoids are considered perfect candidates for their incorporation into electron donor-acceptor (D-A) arrays due to their remarkable optoelectronic properties and low reorganization energies. For the first time, a series of subphthalocyanine (SubPc) and corrole (Cor) were covalently connected through a short-range linkage. SubPc axial substitution strategies were employed, which allowed the synthesis of the target molecules in decent yields. In this context, a qualitative synthetic approach was performed to reverse the expected direction of the different electronic events. Consequently, in-depth absorption, fluorescence, and electrochemical assays enabled the study of electronic and photophysical properties. Charge separation was observed in cases of electron-donating Cors, whereas a quantitative energy transfer from the Cor to the SubPc was detected in the case of electron accepting Cors.
Collapse
Affiliation(s)
- Víctor Mariñas
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly,Department of Organic ChemistryUniversidad Autónoma de MadridCampus de CantoblancoC/ Francisco Tomás y Valiente 728049MadridSpain
| | - Benedikt Platzer
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Jorge Labella
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de CantoblancoC/ Francisco Tomás y Valiente 728049MadridSpain
| | - Fabrizio Caroleo
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Sara Nardis
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Roberto Paolesse
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Dirk M. Guldi
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Tomás Torres
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de CantoblancoC/ Francisco Tomás y Valiente 728049MadridSpain,IMDEA – NanocienciaC/ Faraday 9, Campus de Cantoblanco28049MadridSpain,Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
6
|
Liu R, Rong J, Wu Z, Taniguchi M, Bocian DF, Holten D, Lindsey JS. Panchromatic Absorbers Tethered for Bioconjugation or Surface Attachment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196501. [PMID: 36235037 PMCID: PMC9573448 DOI: 10.3390/molecules27196501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
The syntheses of two triads are reported. Each triad is composed of two perylene-monoimides linked to a porphyrin via an ethyne unit, which bridges the perylene 9-position and a porphyrin 5- or 15-position. Each triad also contains a single tether composed of an alkynoic acid or an isophthalate unit. Each triad provides panchromatic absorption (350–700 nm) with fluorescence emission in the near-infrared region (733 or 743 nm; fluorescence quantum yield ~0.2). The syntheses rely on the preparation of trans-AB-porphyrins bearing one site for tether attachment (A), an aryl group (B), and two open meso-positions. The AB-porphyrins were prepared by the condensation of a 1,9-diformyldipyrromethane and a dipyrromethane. The installation of the two perylene-monoimide groups was achieved upon the 5,15-dibromination of the porphyrin and the subsequent copper-free Sonogashira coupling, which was accomplished before or after the attachment of the tether. The syntheses provide relatively straightforward access to a panchromatic absorber for use in bioconjugation or surface-attachment processes.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Jie Rong
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Zhiyuan Wu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
- Correspondence: (D.F.B.); (D.H.); (J.S.L.); Tel.: +1-919-515-6406 (J.S.L.)
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA
- Correspondence: (D.F.B.); (D.H.); (J.S.L.); Tel.: +1-919-515-6406 (J.S.L.)
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Correspondence: (D.F.B.); (D.H.); (J.S.L.); Tel.: +1-919-515-6406 (J.S.L.)
| |
Collapse
|
7
|
Taniguchi M, Bocian DF, Holten D, Lindsey JS. Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
8
|
Roy A, Diers JR, Niedzwiedzki DM, Meares A, Yu Z, Bhagavathy GV, Satraitis A, Kirmaier C, Ptaszek M, Bocian DF, Holten D. Photophysical Properties and Electronic Structure of Hydroporphyrin Dyads Exhibiting Strong Through-Space and Through-Bond Electronic Interactions. J Phys Chem A 2022; 126:5107-5125. [PMID: 35901315 DOI: 10.1021/acs.jpca.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electronic interactions between tetrapyrroles are utilized in natural photosynthetic systems to tune the light-harvesting and energy-/charge-transfer processes in these assemblies. Such interactions also can be employed to tailor the electronic properties of tetrapyrrolic dyads and larger arrays for use in materials science and biomedical research. Here, we have utilized static and time-resolved optical spectroscopy to characterize the optical absorption and emission properties of a set of chlorin and bacteriochlorin dyads with varying degrees of through-bond (TB) and through-space (TS) interactions between the constituent macrocycles. The dyads consist of two chlorins or two bacteriochlorins joined by a linker that utilizes a triple-double-triple-bond (enediyne) motif in which the double-bond portion is an ester-substituted ethylene or o-phenylene unit. The photophysical studies are coupled with density functional theory (DFT) calculations to probe the ground-state molecular orbital (MO) characteristics of the dyads and time-dependent DFT calculations (TDDFT) to elucidate excited-state properties. The latter include electronic characteristics of the singlet excited-state manifold and the absorption transitions to these states from the electronic ground state. A comparison of the MO and calculated spectral properties of each dyad with the linker present versus disrupted (by eliminating the double-bond portion) gives insight into the relative contributions of TB versus TS interactions to the electronic properties of the dyads. The results show that the TB and TS contributions are additive (constructively interfere), which is not always the case for molecular dyads. Most of the dyads have shorter lifetimes of the lowest singlet excited state compared to the parent monomer, which derives from increased S1 → S0 internal conversion. The enhancement is greater for the dyads in benzonitrile than in toluene. The studies provide insights into the nature of the electronic interactions between the constituents in the tetrapyrrole arrays and how these interactions dictate the spectral properties and excited-state decay characteristics.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Ganga Viswanathan Bhagavathy
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250-0001, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
9
|
Platzer B, Berionni Berna B, Bischetti M, Cicero DO, Paolesse R, Nardis S, Torres T, Guldi DM. Exploring the Association of Electron‐Donating Corroles with Phthalocyanines as Electron Acceptors. Chemistry 2022; 28:e202103891. [PMID: 35084748 PMCID: PMC9306480 DOI: 10.1002/chem.202103891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Electron‐donating corroles (Cor) were integrated with electron‐accepting phthalocyanines (Pc) to afford two different non‐covalent Cor ⋅ Pc systems. At the forefront was the coordination between a 10‐meso‐pyridine Cor and a ZnPc. The complexation was corroborated in a combination of NMR, absorption, and fluorescence assays, and revealed association with binding constants as high as 106
m−1. Steady‐state and time‐resolved spectroscopies evidenced that regardless of exciting Cor or Pc, the charge‐separated state evolved efficiently in both cases, followed by a slow charge‐recombination to reinstate the ground state. The introduction of non‐covalent linkages between Cor and Pc induces sizeable differences in the context of light harvesting and transfer of charges when compared with covalently linked Cor‐Pc conjugates.
Collapse
Affiliation(s)
- Benedikt Platzer
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| | - Beatrice Berionni Berna
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
- Departamento de Química Orgánica Universidad Autónoma de Madrid, Campus de Cantoblanco C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Martina Bischetti
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Daniel O. Cicero
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Tomás Torres
- Departamento de Química Orgánica Universidad Autónoma de Madrid, Campus de Cantoblanco C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, Campus de Cantoblanco 28049 Madrid Spain
- IMDEA-Nanociencia C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
10
|
Rong J, Magdaong NCM, Taniguchi M, Diers JR, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Electronic Structure and Excited-State Dynamics of Rylene-Tetrapyrrole Panchromatic Absorbers. J Phys Chem A 2021; 125:7900-7919. [PMID: 34472866 DOI: 10.1021/acs.jpca.1c05771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Panchromatic absorbers have potential applications in molecular-based energy-conversion schemes. A prior porphyrin-perylene dyad (P-PMI, where "MI" denotes monoimide) coupled via an ethyne linker exhibits panchromatic absorption (350-700 nm) and a tetrapyrrole-like lowest singlet excited state with a relatively long singlet excited-state lifetime (τS) and increased fluorescence quantum yield (Φf) versus the parent porphyrin. To explore the extension of panchromaticity to longer wavelengths, three arrays have been synthesized: a chlorin-terrylene dyad (C-TMI), a bacteriochlorin-terrylene dyad (B-TMI), and a perylene-porphyrin-terrylene triad (PMI-P-TMI), where the terrylene, a π-extended homologue of perylene, is attached via an ethyne linker. Characterization of the spectra (absorption and fluorescence), excited-state properties (lifetime, yields, and rate constants of decay pathways), and molecular-orbital characteristics reveals unexpected subtleties. The wavelength of the red-region absorption band increases in the order C-TMI (705 nm) < PMI-P-TMI (749 nm) < B-TMI (774 nm), yet each array exhibits diminished Φf and shortened τS values. The PMI-P-TMI triad in toluene exhibits Φf = 0.038 and τS = 139 ps versus the all-perylene triad (PMI-P-PMI) for which Φf = 0.26 and τS = 2000 ps. The results highlight design constraints for auxiliary pigments with tetrapyrroles to achieve panchromatic absorption with retention of viable excited-state properties.
Collapse
Affiliation(s)
- Jie Rong
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Nikki Cecil M Magdaong
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James R Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David F Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, United States
| |
Collapse
|
11
|
Guerra WD, Odella E, Urrutia MN, Liddell PA, Moore TA, Moore AL. Models to study photoinduced multiple proton coupled electron transfer processes. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In water-oxidizing photosynthetic organisms, excitation of the reaction-center chlorophylls (P680) triggers a cascade of electron and proton transfer reactions that establish charge separation across the membrane and proton-motive force. An early oxidation step in this process involves proton-coupled electron transfer (PCET) via a tyrosine-histidine redox relay (Yz-H190). Herein, we report the synthesis and structural characterization of two isomeric dyads designed to model this PCET process. Both are based on the same high potential fluorinated porphyrin (model for P680), linked to isomeric pyridylbenzimidazole-phenols (models for Yz-H190). The two isomeric dyads have different hydrogen bond frameworks, which is expected to change the PCET photooxidation mechanism. In these dyads, 1H NMR evidence indicates that in one dyad the hydrogen bond network would support a Grotthuss-type proton transfer process, whereas in the other the hydrogen bond network is interrupted. Photoinduced one-electron, two-proton transfer is expected to occur in the fully hydrogen-bonded dyad upon oxidation of the phenol by the excited state of the porphyrin. In contrast for the isomer with the interrupted hydrogen bond network, an ultrafast photoinduced one-electron one-proton transfer process is anticipated, followed by a much slower proton transfer to the terminal proton acceptor. Understanding the nature of photoinduced PCET mechanisms in these biomimetic models will provide insights into the design of future generations of artificial constructs involved in energy conversion schemes.
Collapse
Affiliation(s)
- Walter D. Guerra
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - María N. Urrutia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Paul A. Liddell
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Thomas A. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Ana L. Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
12
|
Kang HS, Satraitis A, Meares A, Bhagavathy GV, Diers JR, Niedzwiedzki DM, Kirmaier C, Ptaszek M, Bocian DF, Holten D. Conjugated-linker dependence of the photophysical properties and electronic structure of chlorin dyads. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The synthesis, photophysical properties and electronic structure of seven new chlorin dyads and associated benchmark monomers are described. Each dyad contains two identical chlorins linked at the macrocycle [Formula: see text]-pyrrole 13-position. The extent of electronic communication between chlorin constituents depends on the nature of the conjugated linker. The communication is assessed by modification of prominent ground-state absorption and redox properties, rate constants and yields of excited-state decay processes, and molecular-orbital characteristics. Relative to the benchmark monomers, the chlorin dyads in toluene exhibit a substantial bathochromic shift of the long-wavelength absorption band (30 nm average), two-fold increased radiative rate constant [average (10 ns)[Formula: see text] vs. (22 ns)[Formula: see text]], reduced singlet excited-state lifetimes (average 5.0 ns vs. 8.2 ns), and increased fluorescence quantum yields (average 0.56 vs. 0.42). The excited-state lifetime and fluorescence yield for the chlorin dyad with a benzothiadiazole linker are reduced substantially in benzonitrile vs. toluene due largely to [Formula: see text]25-fold accelerated internal conversion. The results aid design strategies for molecular architectures that may find utility in solar-energy conversion and photomedicine.
Collapse
Affiliation(s)
- Hyun Suk Kang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - Ganga Viswanathan Bhagavathy
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - James R. Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | - Dariusz M. Niedzwiedzki
- Center for Solar Energy and Energy Storage and Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, MO 63130-4889, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, USA
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA
| |
Collapse
|
13
|
Bottari G, de la Torre G, Guldi DM, Torres T. An exciting twenty-year journey exploring porphyrinoid-based photo- and electro-active systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Yang F, Wu Y, Zhao J, Guo Y, Guo X, Li W, Wang J. Excited-state photophysical processes in a molecular system containing perylene bisimide and zinc porphyrin chromophores. Phys Chem Chem Phys 2020; 22:20891-20900. [PMID: 32915174 DOI: 10.1039/d0cp02672g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Multichromophoric systems with efficient photoinduced excited-state processes are important for the conversion of solar energy in artificial photosynthesis. However, a low molecular absorption coefficient of these multichromophoric systems in the near-infrared region limits their power conversion efficiency in organic solar cells. It is critical to design molecules with a broad absorption range in the whole spectral region, to better harvest solar energy, and to reveal their important multiple-step photophysical processes for the design of organic solar cells. Here, we investigate a novel compound having three chromophores, namely two near-by N,N'-bis(1-pentyl)hexyl-3,4,9,10-perylenebiscarboximide (PDI) units linked to a zinc porphyrin core side by side (in the form of PDI-ZnPor-PDI), which absorbs solar energy ranging from the ultraviolet (UV) to near-infrared regions. The photophysical behavior of PDI-ZnPor-PDI in both film and solution forms, has been investigated using steady-state and transient spectroscopy measurements. Charge-transfer species and triplet excited-state species are observed, the excited-state evolutions of which are monitored using molecular vibrations as probes. These observations support the idea that PDI-ZnPor-PDI on photoexcitation generates the radical anion and triplet species of the PDI unit (PDI˙- and 3PDI*). Our results demonstrate the effect of solid film state on the photophysical properties in such multichromophoric system, and are valuable for guiding the design and utilization of novel near-infrared electron donors or acceptors for use in organic solar cells.
Collapse
Affiliation(s)
- Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yanzhou Wu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiting Guo
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China and Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xudong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Chakraborty S, Kayastha P, Ramakrishnan R. The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling. J Chem Phys 2019; 150:114106. [PMID: 30902009 DOI: 10.1063/1.5088083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Combinatorial introduction of heteroatoms in the two-dimensional framework of aromatic hydrocarbons opens up possibilities to design compound libraries exhibiting desirable photovoltaic and photochemical properties. Exhaustive enumeration and first-principles characterization of this chemical space provide indispensable insights for rational compound design strategies. Here, for the smallest seventy-seven Kekulean-benzenoid polycyclic systems, we reveal combinatorial substitution of C atom pairs with the isosteric and isoelectronic B, N pairs to result in 7 453 041 547 842 (7.4 tera) unique molecules. We present comprehensive frequency distributions of this chemical space, analyze trends, and discuss a symmetry-controlled selectivity manifestable in synthesis product yield. Furthermore, by performing high-throughput ab initio density functional theory calculations of over thirty-three thousand (33k) representative molecules, we discuss quantitative trends in the structural stability and inter-property relationships across heteroarenes. Our results indicate a significant fraction of the 33k molecules to be electronically active in the 1.5-2.5 eV region, encompassing the most intense region of the solar spectrum, indicating their suitability as potential light-harvesting molecular components in photo-catalyzed solar cells.
Collapse
Affiliation(s)
- Sabyasachi Chakraborty
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Prakriti Kayastha
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| | - Raghunathan Ramakrishnan
- Tata Institute of Fundamental Research, Centre for Interdisciplinary Sciences, Hyderabad 500107, India
| |
Collapse
|
16
|
Lee SH, Matula AJ, Hu G, Troiano JL, Karpovich CJ, Crabtree RH, Batista VS, Brudvig GW. Strongly Coupled Phenazine-Porphyrin Dyads: Light-Harvesting Molecular Assemblies with Broad Absorption Coverage. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8000-8008. [PMID: 30698407 DOI: 10.1021/acsami.8b20996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of light-harvesting architectures with broad absorption coverage in the visible region continues to be an important research area in the field of artificial photosynthesis. Here, we introduce a new class of ethynyl-linked panchromatic dyads composed of dibenzophenazines coupled ortho and meta to tetrapyrroles with an anchoring group that can be grafted onto metal oxide surfaces. Quantum chemical calculations and photophysical measurements of the synthesized materials reveal that both of the dibenzophenazine dyads absorb broadly from 300 to 636 nm and exhibit absorption bands different from those of the constituent chromophore units. Moreover, the different points of attachment of dibenzophenazines to tetrapyrroles give different absorption profiles which computations suggest result from differences in the planarity of the two dyads. Applicability of the dyads in artificial photosynthesis systems was assessed by their incorporation and characterization of their performance in dye-sensitized solar cells.
Collapse
Affiliation(s)
- Shin Hee Lee
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Adam J Matula
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Gongfang Hu
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Jennifer L Troiano
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Christopher J Karpovich
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Robert H Crabtree
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Victor S Batista
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - Gary W Brudvig
- Department of Chemistry, and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
17
|
Fujita H, Jing H, Krayer M, Allu S, Veeraraghavaiah G, Wu Z, Jiang J, Diers JR, Magdaong NCM, Mandal AK, Roy A, Niedzwiedzki DM, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Annulated bacteriochlorins for near-infrared photophysical studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01113g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriochlorins with phenaleno or benzo annulation absorb at 913 or 1033 nm and exhibit excited-state lifetimes of 150 or 7 ps, suggesting applications in photoacoustic imaging.
Collapse
Affiliation(s)
- Hikaru Fujita
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Haoyu Jing
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Michael Krayer
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | - Zhiyuan Wu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Jianbing Jiang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - James R. Diers
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Amit K. Mandal
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Arpita Roy
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Dariusz M. Niedzwiedzki
- Department of Energy
- Environmental & Chemical Engineering and Center for Solar Energy and Energy Storage
- Washington University
- St. Louis
- USA
| | | | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|