1
|
Sit MK, Das S, Samanta K. Machine Learning-Assisted Mixed Quantum-Classical Dynamics without Explicit Nonadiabatic Coupling: Application to the Photodissociation of Peroxynitric Acid. J Phys Chem A 2024; 128:8244-8253. [PMID: 39283987 DOI: 10.1021/acs.jpca.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We have devised a hybrid quantum-classical scheme utilizing machine-learned potential energy surfaces (PES), which circumvents the need for explicit computation of nonadiabatic coupling elements. The quantities necessary to account for the nonadiabatic effects are directly obtained from the PESs. The simulation of dynamics is based on the fewest-switches surface-hopping method. We applied this scheme to model the photodissociation of both N-O and O-O bonds in a conformer of peroxynitric acid (HO2NO2). Adiabatic PES data for the six lowest states of this molecule were computed at the CASSCF level for various nuclear configurations. These served as the training data for the machine-learning models for the PESs. The dynamics simulation was initiated on the lowest optically bright singlet excited state (S4) and propagated along the two Jacobi coordinates J → 1 and J → 2 while accounting for the nonadiabatic effects through transitions between PESs. Our analysis revealed that there is a very high chance of dissociation of the N-O bond leading to the HO2 and NO2 fragments.
Collapse
Affiliation(s)
- Mahesh K Sit
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Subhasish Das
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
2
|
S Mattos R, Mukherjee S, Barbatti M. Quantum Dynamics from Classical Trajectories. J Chem Theory Comput 2024. [PMID: 39235064 DOI: 10.1021/acs.jctc.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Nonadiabatic molecular dynamics plays an essential role in exploring the time evolution of molecular systems. Various methods have been developed for this study, with varying accuracy and computational cost. One very successful among them is trajectory surface hopping, which propagates nuclei as classical trajectories using forces from a quantum description of the electrons and incorporates nonadiabatic effects through stochastic state changes during each trajectory propagation. A statistical analysis of an ensemble of the independent trajectories recovers the simulated system's behavior. This approach can give good results, but it is known to overlook nuclear quantum effects, leading to inaccurate predictions. Here, we present quantum dynamics from classical trajectories (QDCT), a new protocol to recover the quantum wavepacket from the classical trajectories generated by surface hopping. In this first QDCT implementation, we apply it to recover results at the multiple spawning level from postprocessing surface hopping precomputed trajectories. With a series of examples, we demonstrate QDCT's potential to improve the accuracy of the dynamics, correct decoherence effects, and diagnose problems or increase confidence in surface hopping results. All that comes at virtually no computational cost since no new electronic calculation is required.
Collapse
Affiliation(s)
- Rafael S Mattos
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
| | - Saikat Mukherjee
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87100 Torun, Poland
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, 13397 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
3
|
Xu J, Shi Z, Wang L. Consistent Construction of the Density Matrix from Surface Hopping Trajectories. J Chem Theory Comput 2024; 20:2349-2361. [PMID: 38490993 DOI: 10.1021/acs.jctc.4c00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Proper construction of the density matrix based on surface hopping trajectories remains a difficult problem. Due to the well-known overcoherence in traditional surface hopping simulations, the electronic wave function cannot be used directly. In this work, we propose a consistent density matrix construction method, which takes the advantage of occupation of active states to rescale the coherence calculated by wave functions and ensures the intrinsic consistency of the density matrix. This new trajectory analysis method can be used for both Tully's fewest switches surface hopping (FSSH) and our recently proposed branching corrected surface hopping (BCSH). As benchmarked in both one- and two-dimensional standard scattering models, the new approach combined with BCSH trajectories achieves highly accurate time-dependent spatial distributions of adiabatic populations and coherence compared to exact quantum results.
Collapse
Affiliation(s)
- Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Akimov AV. Energy-Conserving and Thermally Corrected Neglect of Back-Reaction Approximation Method for Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:11673-11683. [PMID: 38109379 DOI: 10.1021/acs.jpclett.3c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In this work, the energy-conserving and thermally corrected neglect of the back-reaction approximation approach for nonadiabatic molecular dynamics in extended atomistic systems is developed. The new approach introduces three key corrections to the original method: (1) it enforces the total energy conservation, (2) it introduces an explicit coupling of the system to its environment, and (3) it introduces a renormalization of nonadiabatic couplings to account for a difference between the instantaneous nuclear kinetic energy and the kinetic energy of guiding trajectories. In the new approach, an auxiliary kinetic energy variable is introduced as an independent dynamical variable. The new approach produces nonzero equilibrium populations, whereas the original neglect of the back-reaction approximation method does not. It yields population relaxation time scales that are favorably comparable to the reference values, and it introduces an explicit and controllable way of dissipating energy into a bath without an assumption of the bath being at equilibrium.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| |
Collapse
|
5
|
Shao C, Shi Z, Xu J, Wang L. Learning Decoherence Time Formulas for Surface Hopping from Quantum Dynamics. J Phys Chem Lett 2023; 14:7680-7689. [PMID: 37606199 DOI: 10.1021/acs.jpclett.3c02019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Surface hopping simulations have achieved great success in many different fields, but their reliability has long been limited by the overcoherence problem. We here present a general machine learning assisted approach to identify optimal decoherence time formulas for surface hopping using exact quantum dynamics as references. In order to avoid computationally expensive force calculations, we use the nuclear kinetic energy and the adiabatic energy difference to iteratively generate the descriptor space. Through multilayer screening of the candidate descriptors and discrete optimization of the relevant parameters, we obtain new energy-based decoherence time formulas. As benchmarked in thousands of diverse multilevel systems and six standard scattering models, surface hopping with our new decoherence time formulas nearly reproduces the exact quantum dynamics while maintaining high efficiency. Thereby, our approach provides a promising avenue for systematically improving the accuracy of surface hopping simulations in complex systems from quantum dynamics data.
Collapse
Affiliation(s)
- Cancan Shao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Toldo JM, do Casal MT, Ventura E, do Monte SA, Barbatti M. Surface hopping modeling of charge and energy transfer in active environments. Phys Chem Chem Phys 2023; 25:8293-8316. [PMID: 36916738 PMCID: PMC10034598 DOI: 10.1039/d3cp00247k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
Collapse
Affiliation(s)
| | | | - Elizete Ventura
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Silmar A do Monte
- Departamento de Química, CCEN, Universidade Federal da Paraíba, 58059-900, João Pessoa, Brazil.
| | - Mario Barbatti
- Aix-Marseille University, CNRS, ICR, Marseille, France.
- Institut Universitaire de France, 75231, Paris, France
| |
Collapse
|
7
|
Sit MK, Das S, Samanta K. Semiclassical Dynamics on Machine-Learned Coupled Multireference Potential Energy Surfaces: Application to the Photodissociation of the Simplest Criegee Intermediate. J Phys Chem A 2023; 127:2376-2387. [PMID: 36856588 DOI: 10.1021/acs.jpca.2c07229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Determination of high-dimensional potential energy surfaces (PESs) and nonadiabatic couplings have always been quite challenging. To this end, machine learning (ML) models, trained with a finite set of ab initio data, allow accurate prediction of such properties. To express the PESs in terms of atomic contributions is the cornerstone of any ML based technique because it can be easily scaled to large systems. In this work, we have constructed high fidelity PESs and nonadiabatic coupling terms at the CASSCF level of ab initio data using a machine learning technique, namely, kernel-ridge regression. Additional MRCI-level calculations were carried out to assess the quality of the PESs. We use these machine-learned PESs and nonadiabatic couplings to simulate excited-state molecular dynamics based on Tully's fewest-switches surface hopping method (FSSH). FSSH is a semiclassical method in which nuclei move on the PESs due to the electrons according to the laws of classical mechanics. Nonadiabatic effects are taken into account in terms of transitions between PESs. We apply this scheme to study the O-O photodissociation of the simplest Criegee intermediate (CH2OO). The FSSH trajectories were initiated on the lowest optically bright singlet excited state (S2) and propagated along the three most important internal coordinates, namely, O-O and C-O bond distances and the COO bond angle. Some of the trajectories end up on energetically lower PESs as a result of radiationless transfer through conical intersections. All of the trajectories lead to the dissociation of the O-O bond due to the dissociative nature of the excited PESs through one of the two dissociative channels. The simulation reveals that there is about 88.4% probability of dissociation through the lower channel leading to the H2CO (X1A1) and O (1D) products, whereas there is only 11.6% probability of dissociation through the upper channel leading to H2CO (a3A″) and O (3P) products.
Collapse
Affiliation(s)
- Mahesh K Sit
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Subhasish Das
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
8
|
Jain A, Sindhu A. Pedagogical Overview of the Fewest Switches Surface Hopping Method. ACS OMEGA 2022; 7:45810-45824. [PMID: 36570264 PMCID: PMC9773185 DOI: 10.1021/acsomega.2c04843] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The fewest switches surface hopping method continues to grow in popularity to capture electronic nonadiabaticity and quantum nuclear effects due to its simplicity and accuracy. Knowing the basics of the method is essential for the correct implementation and interpretation of results. This review covers the fundamentals of the fewest switches surface hopping method with a detailed discussion of the nuances such as decoherence schemes and frustrated hops and the correct approach to calculating populations. The consequences of incorrect implementation are further discussed toward calculating kinetic and thermodynamic properties. Some tips for practitioners and a step-by-step algorithm for developers are provided. Finally, some of the finer technicalities of the fewest switches surface hopping method that are buried deep in the literature are pointed out to help graduate students better appreciate this method.
Collapse
|
9
|
Li W, She Y, Vasenko AS, Prezhdo OV. Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites. NANOSCALE 2021; 13:10239-10265. [PMID: 34031683 DOI: 10.1039/d1nr01990b] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron-phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge-charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, People's Republic of China.
| | | | | | | |
Collapse
|
10
|
Shao C, Xu J, Wang L. Branching and phase corrected surface hopping: A benchmark of nonadiabatic dynamics in multilevel systems. J Chem Phys 2021; 154:234109. [PMID: 34241240 DOI: 10.1063/5.0056224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since the seminal work of Tully [J. Chem. Phys. 93, 1061 (1990)], two-level scattering models have been extensively adopted as the standard benchmark systems to assess the performance of different trajectory surface hopping methods for nonadiabatic dynamics simulations. Here, we extend the branching and phase corrections to multilevel systems and combine them with both the traditional fewest switches surface hopping (FSSH) and its variant global flux surface hopping (GFSH) algorithms. To get a comprehensive evaluation of the proposed methods, we construct a series of more challenging and diverse three-level and four-level scattering models and use exact quantum solutions as references. Encouragingly, both FSSH and GFSH with the branching and phase corrections produce excellent and nearly identical results in all investigated systems, indicating that the new surface hopping methods are robust to describe multilevel problems and the reliability is insensitive to the definition of self-consistent hopping probabilities in the adiabatic representation. Furthermore, the branching correction is found to be especially important when dealing with strongly repulsive potential energy surfaces, which are common in realistic systems, thus promising for general applications.
Collapse
Affiliation(s)
- Cancan Shao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Freixas VM, White AJ, Nelson T, Song H, Makhov DV, Shalashilin D, Fernandez-Alberti S, Tretiak S. Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence. J Phys Chem Lett 2021; 12:2970-2982. [PMID: 33730495 DOI: 10.1021/acs.jpclett.1c00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum-classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.
Collapse
Affiliation(s)
- Victor M Freixas
- Universidad Nacional de Quilmes, Roque Saénz Peña 352, B1876BXD Bernal, Argentina
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | | | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
12
|
Miao G, Bian X, Zhou Z, Subotnik J. A "backtracking" correction for the fewest switches surface hopping algorithm. J Chem Phys 2020; 153:111101. [PMID: 32962370 DOI: 10.1063/5.0022436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a "backtracking" mechanism within Tully's fewest switches surface hopping (FSSH) algorithm, whereby whenever one detects consecutive (double) hops during a short period of time, one simply rewinds the dynamics backward in time. In doing so, one reduces the number of hopping events and comes closer to a truly fewest switches surface hopping approach with independent trajectories. With this algorithmic change, we demonstrate that surface hopping can be reasonably accurate for nuclear dynamics in a multidimensional configuration space with a complex-valued (i.e., not real-valued) electronic Hamiltonian; without this adjustment, surface hopping often fails. The added computational cost is marginal. Future research will be needed to assess whether or not this backtracking correction can improve the accuracy of a typical FSSH calculation with a real-valued electronic Hamiltonian (that ignores spin).
Collapse
Affiliation(s)
- Gaohan Miao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zeyu Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Wang X, Long R. Oxidation Notably Accelerates Nonradiative Electron-Hole Recombination in MoS 2 by Different Mechanisms: Time-Domain Ab Initio Analysis. J Phys Chem Lett 2020; 11:4086-4092. [PMID: 32354209 DOI: 10.1021/acs.jpclett.0c01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) experience degradation in optoelectronic properties under ambient conditions. By performing nonadiabatic (NA) molecular dynamics simulations, we demonstrate that the MoS2 monolayer containing substitutional oxygen and oxygen adatom accelerates nonradiative electron-hole recombination by a factor of about 1.5 compared to perfect film but operates by different mechanisms. The substitutional oxygen creates no midgap states while enhancing NA coupling by increasing the overlap between electron and hole wave functions, accelerating electron-hole recombination. In contrast, electrons significantly populate the deep trap state created by the oxygen adatom because the trap is modestly delocalized and coupled strongly to free charges. The trap mediated instead of the direct pathway dominates the electron-hole recombination. The generated insights uncover the mechanisms for different types of defects on influencing charge dynamics in TMDs and suggest that the oxygen defects should be avoided for the design of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
14
|
Zhou Z, Chen HT, Nitzan A, Subotnik JE. Nonadiabatic Dynamics in a Laser Field: Using Floquet Fewest Switches Surface Hopping To Calculate Electronic Populations for Slow Nuclear Velocities. J Chem Theory Comput 2020; 16:821-834. [PMID: 31951404 DOI: 10.1021/acs.jctc.9b00950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigate two well-known approaches for extending the fewest switches surface hopping (FSSH) algorithm to periodic time-dependent couplings. The first formalism acts as if the instantaneous adiabatic electronic states were standard adiabatic states, which just happen to evolve in time. The second formalism replaces the role of the usual adiabatic states by the time-independent adiabatic Floquet states. For a set of modified Tully model problems, the Floquet FSSH (F-FSSH) formalism gives a better estimate for both transmission and reflection probabilities than the instantaneous adiabatic FSSH (IA-FSSH) formalism, especially for slow nuclear velocities. More importantly, only F-FSSH predicts the correct final scattering momentum. Finally, in order to use Floquet theory accurately, we find that it is crucial to account for the interference between wavepackets on different Floquet states. Our results should be of interest to all those interested in laser-induced molecular dynamics.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Hsing-Ta Chen
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Abraham Nitzan
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Joseph Eli Subotnik
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
15
|
Ibele LM, Curchod BFE. A molecular perspective on Tully models for nonadiabatic dynamics. Phys Chem Chem Phys 2020; 22:15183-15196. [DOI: 10.1039/d0cp01353f] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We present a series of standardized molecular tests for nonadiabatic dynamics, reminiscent of the one-dimensional Tully models proposed in 1990.
Collapse
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | |
Collapse
|
16
|
Ibele LM, Nicolson A, Curchod BFE. Excited-state dynamics of molecules with classically driven trajectories and Gaussians. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1665199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, Durham, UK
| | | | | |
Collapse
|
17
|
Gómez S, Heindl M, Szabadi A, González L. From Surface Hopping to Quantum Dynamics and Back. Finding Essential Electronic and Nuclear Degrees of Freedom and Optimal Surface Hopping Parameters. J Phys Chem A 2019; 123:8321-8332. [DOI: 10.1021/acs.jpca.9b06103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sandra Gómez
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Moritz Heindl
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - András Szabadi
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| |
Collapse
|