1
|
Vin N, Carstensen HH, Herbinet O, Bourgalais J, Alzueta MU, Battin-Leclerc F. A Combined Experimental and Modeling Study on Isopropyl Nitrate Pyrolysis. J Phys Chem A 2023; 127:2123-2135. [PMID: 36821725 DOI: 10.1021/acs.jpca.2c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Alkyl nitrates thermally decompose by homolytic cleavage of the weak nitrate bond at very low temperatures (e.g., around 500 K at reaction times of a few seconds). This provides the opportunity to study the subsequent chemistry of the initially formed radical (or its subsequent pyrolysis products, if unstable) and nitrogen dioxide at such mild conditions. In this work this idea is applied to isopropyl nitrate (iPN) pyrolysis, which is studied in a tubular reactor at atmospheric pressure, temperatures ranging from 373 to 773 K, and residence times of around 2 s. At the experimental conditions, iPN decomposition starts at 473 K with O-N bond fission producing isopropoxy radical (i-C3H7O) and NO2. i-C3H7O is rapidly converted to acetaldehyde (CH3CHO), which is the most abundant product detected, and methyl radicals. Other major products detected are formaldehyde (CH2O), methanol (CH3OH), nitromethane (CH3NO2), NO, methane, formamide (CHONH2), and methyl nitrite (CH3ONO). Four literature nitrogen chemistry models─three of those augmented with iPN specific reactions─have been tested for their ability to predict the iPN decomposition and product profiles. The mechanism by the Curran group performs best, but it still underpredicts the observed high formaldehyde and methanol yields. A rate analysis indicates that the branching ratio of the reaction between methyl radicals and nitrogen dioxide is of significant importance. Based on recent theoretical and experimental data, new rate expressions for the two reactions CH3 + NO2 → CH3O + NO and CH3 + NO2 + He → CH3ONO2 + He are calculated and incorporated in the kinetic models. It is shown that this change clearly improves the predictions, although additional work is needed to achieve good agreement between calculated and measured species profiles.
Collapse
Affiliation(s)
- Nicolas Vin
- Université de Lorraine, CNRS, LRGP, Nancy 54000, France
| | - Hans-Heinrich Carstensen
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zagaroza 50018, Spain.,Escuela de Ingeniería y Arquitectura, Universidad de Zaragoza, Zaragoza 50018, Spain
| | | | | | | | | |
Collapse
|
2
|
Niu S, Wu X, Hou Q, Luo G, Qu W, Zhao F, Wang G, Zhang F. Theoretical Kinetic Studies on Thermal Decomposition of Glycerol Trinitrate and Trimethylolethane Trinitrate in the Gas and Liquid Phases. J Phys Chem A 2023; 127:1283-1292. [PMID: 36715586 DOI: 10.1021/acs.jpca.2c07282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glycerol trinitrate (NG) and trimethylolethane trinitrate (TMETN), as typical nitrate esters, are important energetic plasticizers in solid propellants. With the aid of high-precision quantum chemical calculations, the Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation theory and the transition state theory have been employed to investigate the decomposition kinetics of NG and TMETN in the gas phase (over the temperature range of 300-1000 K and pressure range of 0.01-100 atm) and liquid phase (using water as the solvent). The continuum solvation model based on solute electron density (SMD) was used to describe the solvent effect. The thermal decomposition mechanism is closely relevant to the combustion properties of energetic materials. The results show that the RO-NO2 dissociation channel overwhelmingly favors other reaction pathways, including HONO elimination for the decomposition of NG and TMETN in both the gas phase and liquid phase. At 500 K and 1 atm, the rate coefficient of gas phase decomposition of TMETN is 5 times higher than that of NG. Nevertheless, the liquid phase decomposition of TMETN is a factor of 5835 slower than that of NG at 500 K. The solvation effect caused by vapor pressure and solubility can be used to justify such contradictions. Our calculations provide detailed mechanistic evidence for the initial kinetics of nitrate ester decomposition in both the gas phase and liquid phase, which is particularly valuable for understanding the multiphase decomposition behavior and building detailed kinetic models for nitrate ester.
Collapse
Affiliation(s)
- Shiyao Niu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230029, China.,Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China.,Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Xiaoqing Wu
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China.,College of Information Engineering, China Jiliang University, Hangzhou, Zhejiang310018, China
| | - Qifeng Hou
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Guangda Luo
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Wengang Qu
- Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China
| | - Fengqi Zhao
- Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi710065, China
| | - Gongming Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230029, China
| | - Feng Zhang
- Heifei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230029, China
| |
Collapse
|
3
|
An Experimental Kinetics Study of Isopropanol Pyrolysis and Oxidation behind Reflected Shock Waves. ENERGIES 2021. [DOI: 10.3390/en14206808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isopropanol has potential as a future bio-derived fuel and is a promising substitute for ethanol in gasoline blends. Even so, little has been done in terms of high-temperature chemical kinetic speciation studies of this molecule. To this end, experiments were conducted in a shock tube using simultaneous CO and H2O laser absorption measurements. Water and CO formation during isopropanol pyrolysis was also examined at temperatures between 1127 and 2162 K at an average pressure of 1.42 atm. Species profiles were collected at temperatures between 1332 and 1728 K and at an average pressure of 1.26 atm for equivalence ratios of 0.5, 1.0, and 2.0 in highly diluted mixtures of 20% helium and 79.5% argon. Species profiles were also compared to four modern C3 alcohol mechanisms, including the impact of recent rate constant measurements. The Li et al. (2019) and Saggese et al. (2021) models both best predict CO and water production under pyrolysis conditions, while the AramcoMech 3.0 and Capriolo and Konnov models better predict the oxidation experimental profiles. Additionally, previous studies have collected ignition delay time (τign) data for isopropanol but are limited to low pressures in highly dilute mixtures. Therefore, real fuel–air experiments were conducted in a heated shock tube with isopropanol for stoichiometric and lean conditions at 10 and 25 atm between 942 and 1428 K. Comparisons to previous experimental results highlight the need for real fuel–air experiments and proper interpretation of shock-tube data. The AramcoMech 3.0 model over predicts τign values, while the Li et al. model severely under predicts τign. The models by Capriolo and Konnov and Saggese et al. show good agreement with experimental τign values. A sensitivity analysis using these two models highlights the underlying chemistry for isopropanol combustion at 25 atm. Additionally, modifying the Li et al. model with a recently measured reaction rate shows improvement in the model’s ability to predict CO and water profiles during dilute oxidation. Finally, a regression analysis was performed to quantify τign results from this study.
Collapse
|
4
|
Fuller ME, Morsch P, Preußker M, Goldsmith CF, Heufer KA. The impact of NO x addition on the ignition behaviour of n-pentane. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00055a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modern engine concepts present several opportunities for nitrogen combustion chemistry, particularly the interaction of NOx (NO + NO2) with fuel fragments and products of partial combustion.
Collapse
Affiliation(s)
- Mark E. Fuller
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| | - Philipp Morsch
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| | - Matthias Preußker
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| | | | - K. Alexander Heufer
- Physico-Chemical Fundamentals of Combustion, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|