• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4637632)   Today's Articles (4387)   Subscriber (50149)
For: Wang CI, Braza MKE, Claudio GC, Nellas RB, Hsu CP. Machine Learning for Predicting Electron Transfer Coupling. J Phys Chem A 2019;123:7792-7802. [PMID: 31429287 DOI: 10.1021/acs.jpca.9b04256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Bhat V, Ganapathysubramanian B, Risko C. Rapid Estimation of the Intermolecular Electronic Couplings and Charge-Carrier Mobilities of Crystalline Molecular Organic Semiconductors through a Machine Learning Pipeline. J Phys Chem Lett 2024;15:7206-7213. [PMID: 38973725 DOI: 10.1021/acs.jpclett.4c01309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
2
Wang CI, Maier JC, Jackson NE. Accessing the electronic structure of liquid crystalline semiconductors with bottom-up electronic coarse-graining. Chem Sci 2024;15:8390-8403. [PMID: 38846409 PMCID: PMC11151863 DOI: 10.1039/d3sc06749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/01/2024] [Indexed: 06/09/2024]  Open
3
Maier JC, Wang CI, Jackson NE. Distilling coarse-grained representations of molecular electronic structure with continuously gated message passing. J Chem Phys 2024;160:024109. [PMID: 38193551 DOI: 10.1063/5.0179253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]  Open
4
Lin HH, Wang CI, Yang CH, Secario MK, Hsu CP. Two-Step Machine Learning Approach for Charge-Transfer Coupling with Structurally Diverse Data. J Phys Chem A 2024;128:271-280. [PMID: 38157315 DOI: 10.1021/acs.jpca.3c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
5
Mostaghimi M, Pacheco Hernandez H, Jiang Y, Wenzel W, Heinke L, Kozlowska M. On-off conduction photoswitching in modelled spiropyran-based metal-organic frameworks. Commun Chem 2023;6:275. [PMID: 38110545 PMCID: PMC10728195 DOI: 10.1038/s42004-023-01072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023]  Open
6
Ma J, Du Z, Lei Z, Wang L, Yu Y, Ye X, Ou W, Wei X, Ai B, Zhou Y. Intermolecular 3D-MoRSE Descriptors for Fast and Accurate Prediction of Electronic Couplings in Organic Semiconductors. J Chem Inf Model 2023;63:5089-5096. [PMID: 37566518 DOI: 10.1021/acs.jcim.3c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
7
Huynh H, Kelly TJ, Vu L, Hoang T, Nguyen PA, Le TC, Jarvis EA, Phan H. Quantum Chemistry-Machine Learning Approach for Predicting Properties of Lewis Acid-Lewis Base Adducts. ACS OMEGA 2023;8:19119-19127. [PMID: 37273580 PMCID: PMC10233689 DOI: 10.1021/acsomega.3c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
8
Hammes-Schiffer S. Exploring Proton-Coupled Electron Transfer at Multiple Scales. NATURE COMPUTATIONAL SCIENCE 2023;3:291-300. [PMID: 37577057 PMCID: PMC10416817 DOI: 10.1038/s43588-023-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 08/15/2023]
9
Tan T, Wang D. Machine learning based charge mobility prediction for organic semiconductors. J Chem Phys 2023;158:094102. [PMID: 36889940 DOI: 10.1063/5.0134379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]  Open
10
Protein engineering for electrochemical biosensors. Curr Opin Biotechnol 2022;76:102751. [PMID: 35777077 DOI: 10.1016/j.copbio.2022.102751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
11
Cignoni E, Cupellini L, Mennucci B. A fast method for electronic couplings in embedded multichromophoric systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022;34:304004. [PMID: 35552268 DOI: 10.1088/1361-648x/ac6f3c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
12
Sivaraman G, Jackson NE. Coarse-Grained Density Functional Theory Predictions via Deep Kernel Learning. J Chem Theory Comput 2022;18:1129-1141. [PMID: 35020388 DOI: 10.1021/acs.jctc.1c01001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
13
Brian D, Sun X. Charge-Transfer Landscape Manifesting the Structure-Rate Relationship in the Condensed Phase Via Machine Learning. J Phys Chem B 2021;125:13267-13278. [PMID: 34825563 DOI: 10.1021/acs.jpcb.1c08260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Sahu H, Li H, Chen L, Rajan AC, Kim C, Stingelin N, Ramprasad R. An Informatics Approach for Designing Conducting Polymers. ACS APPLIED MATERIALS & INTERFACES 2021;13:53314-53322. [PMID: 34038635 DOI: 10.1021/acsami.1c04017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
15
Molecular excited states through a machine learning lens. Nat Rev Chem 2021;5:388-405. [PMID: 37118026 DOI: 10.1038/s41570-021-00278-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
16
Feng J, Wang H, Ji Y, Li Y. Molecular design and performance improvement in organic solar cells guided by high‐throughput screening and machine learning. NANO SELECT 2021. [DOI: 10.1002/nano.202100006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
17
Jackson NE. Coarse-Graining Organic Semiconductors: The Path to Multiscale Design. J Phys Chem B 2021;125:485-496. [PMID: 33369413 DOI: 10.1021/acs.jpcb.0c09749] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
18
Aggarwal A, Vinayak V, Bag S, Bhattacharyya C, Waghmare UV, Maiti PK. Predicting the DNA Conductance Using a Deep Feedforward Neural Network Model. J Chem Inf Model 2020;61:106-114. [PMID: 33320660 DOI: 10.1021/acs.jcim.0c01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
19
Wang CI, Joanito I, Lan CF, Hsu CP. Artificial neural networks for predicting charge transfer coupling. J Chem Phys 2020;153:214113. [PMID: 33291923 DOI: 10.1063/5.0023697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
20
Bahlke MP, Mogos N, Proppe J, Herrmann C. Exchange Spin Coupling from Gaussian Process Regression. J Phys Chem A 2020;124:8708-8723. [DOI: 10.1021/acs.jpca.0c05983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
21
Bag S, Aggarwal A, Maiti PK. Machine Learning Prediction of Electronic Coupling between the Guanine Bases of DNA. J Phys Chem A 2020;124:7658-7664. [DOI: 10.1021/acs.jpca.0c04368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
22
Farahvash A, Lee CK, Sun Q, Shi L, Willard AP. Machine learning Frenkel Hamiltonian parameters to accelerate simulations of exciton dynamics. J Chem Phys 2020;153:074111. [DOI: 10.1063/5.0016009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]  Open
23
Krämer M, Dohmen PM, Xie W, Holub D, Christensen AS, Elstner M. Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians. J Chem Theory Comput 2020;16:4061-4070. [DOI: 10.1021/acs.jctc.0c00246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
24
Organic Photovoltaics: Relating Chemical Structure, Local Morphology, and Electronic Properties. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
25
Kraka E, Zou W, Tao Y. Decoding chemical information from vibrational spectroscopy data: Local vibrational mode theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1480] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
26
Hsu CP. Reorganization energies and spectral densities for electron transfer problems in charge transport materials. Phys Chem Chem Phys 2020;22:21630-21641. [DOI: 10.1039/d0cp02994g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA