1
|
Silva R, Montes-Campos H, Lobo Ferreira AI, Bakis E, Santos LM. Thermodynamic Study of Alkylsilane and Alkylsiloxane-Based Ionic Liquids. J Phys Chem B 2024; 128:3742-3754. [PMID: 38573787 PMCID: PMC11033869 DOI: 10.1021/acs.jpcb.3c08333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The thermodynamic properties of ionic liquids (ILs) bearing alkylsilane and alkylsiloxane chains, as well as their carbon-based analogs, were investigated. Effects such as the replacement of carbon atoms by silicon atoms, the introduction of a siloxane linkage, and the length of the alkylsilane chain were explored. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the thermal and phase behavior (glass transition temperature, melting point, enthalpy and entropy of fusion, and thermal stability). Heat capacity was obtained by high-precision drop calorimetry and differential scanning microcalorimetry. The volatility and cohesive energy of these ILs were investigated via the Knudsen effusion method coupled with a quartz crystal microbalance (KEQCM). Gas phase energetics and structure were also studied to obtain the gas phase heat capacity as well as the energy profile associated with the rotation of the IL side chain. The computational study suggested the existence of an intramolecular interaction in the alkylsiloxane-based IL. The obtained glass transition temperatures seem to follow the trend of chain flexibility. An increase of the alkylsilane chain leads to a seemingly linear increase in molar heat capacity. A regular increment of 30 J·K-1·mol-1 in the molar heat capacity was found for the replacement of carbon by silicon in the IL alkyl chain. The alkylsilane series was revealed to be slightly more volatile than its carbon-based analogs. A further increase in volatility was found for the alkylsiloxane-based IL, which is likely related to the decrease of the cohesive energy due to the existence of an intramolecular interaction between the siloxane linkage and the imidazolium headgroup. The use of Si in the IL structure is a suitable way to significantly reduce the IL's viscosity while preserving its large liquid range (low melting point and high thermal stability) and low volatilities.
Collapse
Affiliation(s)
- Rodrigo
M.A. Silva
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Hadrián Montes-Campos
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Ana I.M.C. Lobo Ferreira
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Eduards Bakis
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Luís M.N.B.F. Santos
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| |
Collapse
|
2
|
R de Moraes B, Paschoal VH, Keppeler N, El Seoud OA, Ando RA. The Coiling Effect in Ether Ionic Liquids: Exploiting Acetate as a Probe for Transport Properties and Microenvironment Analysis. J Phys Chem B 2024. [PMID: 38608137 DOI: 10.1021/acs.jpcb.3c08162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The inherently high viscosity of ionic liquids (ILs) can limit their potential applications. One approach to address this drawback is to modify the cation side chain with ether groups. Herein, we assessed the structure-property relationship by focusing on acetate (OAc), a strongly coordinating anion, with 1,3-dialkylimidazolium cations with different side chains, including alkyl, ether, and hydroxyl functionalized, as well as their combinations. We evaluated their viscosity, thermal stabilities, and microstructure using Raman and infrared (IR) spectroscopies, allied to density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The viscosity data showed that the ether insertion significantly enhances the fluidity of the ILs, consistent with the coiling effect of the cation chain. Through a combined experimental and theoretical approach, we analyzed how the OAc anion interacts with ether ILs, revealing a characteristic bidentate coordination, particularly in hydroxyl functionalized ILs due to specific hydrogen bonding with the OH group. IR spectroscopy showed subtle shifts in the acidic hydrogens of imidazolium ring C(2)-H and C(4,5)-H, suggesting weaker interactions between OAc and the imidazolium ring in ether-functionalized ILs. Additionally, spatial distribution functions (SDF) and dihedral angle distribution obtained via AIMD confirmed the intramolecular hydrogen bonding due to the coiling effect of the ether side chain.
Collapse
Affiliation(s)
- Beatriz R de Moraes
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Vitor H Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Nicolas Keppeler
- Grupo de polímero e surfactantes, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Omar A El Seoud
- Grupo de polímero e surfactantes, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Rômulo A Ando
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
3
|
Rauber D, Philippi F, Becker J, Zapp J, Morgenstern B, Kuttich B, Kraus T, Hempelmann R, Hunt P, Welton T, Kay CWM. Anion and ether group influence in protic guanidinium ionic liquids. Phys Chem Chem Phys 2023; 25:6436-6453. [PMID: 36779955 DOI: 10.1039/d2cp05724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.
Collapse
Affiliation(s)
- Daniel Rauber
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany.
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Julian Becker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Josef Zapp
- Pharmaceutical Biology, Saarland University, Campus B 2.3, 66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany.
| | - Björn Kuttich
- INM-Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Tobias Kraus
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany. .,INM-Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Rolf Hempelmann
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany.
| | - Patricia Hunt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.,School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Christopher W M Kay
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany. .,London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
| |
Collapse
|
4
|
Kumar Panja S, Kumar S. Weak Intra and Intermolecular Interactions via Aliphatic Hydrogen Bonding in Piperidinium Based Ionic Liquids: Experimental, Topological and Molecular Dynamics Studies. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Liu AH, Ma GT, Ren BH, Zhang JY, Lu XB. Alkoxy-Functionalized Amines as Single-Component Water-Lean CO 2 Absorbents with High Efficiency: The Benefit of Stabilized Carbamic Acid. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- An-Hua Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Gan-Tao Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jia-Yuan Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
|
7
|
Philippi F, Welton T. Targeted modifications in ionic liquids - from understanding to design. Phys Chem Chem Phys 2021; 23:6993-7021. [PMID: 33876073 DOI: 10.1039/d1cp00216c] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionic liquids are extremely versatile and continue to find new applications in academia as well as industry. This versatility is rooted in the manifold of possible ion types, ion combinations, and ion variations. However, to fully exploit this versatility, it is imperative to understand how the properties of ionic liquids arise from their constituents. In this work, we discuss targeted modifications as a powerful tool to provide understanding and to enable design. A 'targeted modification' is a deliberate change in the structure of an ionic liquid. This includes chemical changes in an experiment as well as changes to the parameterisation in a computer simulation. In any case, such a change must be purposeful to isolate what is of interest, studying, as far as is possible, only one concept at a time. The concepts can then be used as design elements. However, it is often found that several design elements interact with each other - sometimes synergistically, and other times antagonistically. Targeted modifications are a systematic way of navigating these overlaps. We hope this paper shows that understanding ionic liquids requires experimentalists and theoreticians to join forces and provides a tool to tackle the difficult transition from understanding to design.
Collapse
Affiliation(s)
- Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | | |
Collapse
|
8
|
Zeng HJ, Khuu T, Chambreau SD, Boatz JA, Vaghjiani GL, Johnson MA. Ionic Liquid Clusters Generated from Electrospray Thrusters: Cold Ion Spectroscopic Signatures of Size-Dependent Acid-Base Interactions. J Phys Chem A 2020; 124:10507-10516. [PMID: 33284621 DOI: 10.1021/acs.jpca.0c07595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We determine the intramolecular distortions at play in the 2-hydroxyethylhydrazinium nitrate (HEHN) ionic liquid (IL) propellant, which presents the interesting case that the HEH+ cation has multiple sites (i.e., hydroxy, primary amine, and secondary ammonium groups) available for H-bonding with the nitrate anion. These interactions are quantified by analyzing the vibrational band patterns displayed by cold cationic clusters, (HEH+)n(NO3-)n-1, n = 2-6, which are obtained using IR photodissociation of the cryogenically cooled, mass-selected ions. The strong interaction involving partial proton transfer of the acidic N-H proton in HEH+ cation to the nitrate anion is strongly enhanced in the ternary n = 2 cluster but is suppressed with increasing cluster size. The cluster spectra recover the bands displayed by the bulk liquid by n = 5, thus establishing the minimum domain required to capture this aspect of macroscopic behavior.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Steven D Chambreau
- Jacobs Technology, Inc., Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Jerry A Boatz
- Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Zeng HJ, Menges FS, Niemann T, Strate A, Ludwig R, Johnson MA. Chain Length Dependence of Hydrogen Bond Linkages between Cationic Constituents in Hydroxy-Functionalized Ionic Liquids: Tracking Bulk Behavior to the Molecular Level with Cold Cluster Ion Spectroscopy. J Phys Chem Lett 2020; 11:683-688. [PMID: 31899639 DOI: 10.1021/acs.jpclett.9b03359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydroxy functionalization of cations in ionic liquids (ILs) can lead to formation of contacts between their OH groups [so-called (c-c) interactions]. One class of these linkages involves cooperatively enhanced hydrogen bonds to anionic partners that are sufficiently strong to overcome the repulsion between two positively charged centers. Herein, we clarify how the propensity for the formation of (c-c) contacts depends on the alkyl chain length between two cationic rings and their OH groups by analyzing the temperature-dependent IR spectra of bulk ILs as well as the vibrational predissociation spectra of ∼35 K complexes comprised of two cations and one anion. This study compares the behavior of two cationic derivatives with ethyl and propyl chains complexed with two different anions: bis(trifluoromethylsulfonyl)imide and tetrafluoroborate. Only the bulk ILs with the longer chain propyl derivative [HPMPip+ = 1-(3-hydroxypropyl)-1-methylpiperidinium] display (c-c) interactions. Molecular-level aspects of this docking arrangement are revealed by analyzing the OH stretching fundamentals displayed by the ternary complexes.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Fabian S Menges
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Thomas Niemann
- Department of Chemistry , University of Rostock , 18059 Rostock , Germany
- Department Life, Light & Matter , University of Rostock , Albert-Einstein-Strasse 25 , 18059 Rostock , Germany
| | - Anne Strate
- Department of Chemistry , University of Rostock , 18059 Rostock , Germany
- Department Life, Light & Matter , University of Rostock , Albert-Einstein-Strasse 25 , 18059 Rostock , Germany
| | - Ralf Ludwig
- Department of Chemistry , University of Rostock , 18059 Rostock , Germany
- Department Life, Light & Matter , University of Rostock , Albert-Einstein-Strasse 25 , 18059 Rostock , Germany
- Leibniz-Institut für Katalyse e.V. , Albert-Einstein-Strasse 29a , 18059 Rostock , Germany
| | - Mark A Johnson
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
10
|
Zhou Y, Xu X, Wang Z, Gong S, Chen H, Yu Z, Kiefer J. The effect of introducing an ether group into an imidazolium-based ionic liquid in binary mixtures with DMSO. Phys Chem Chem Phys 2020; 22:15734-15742. [DOI: 10.1039/d0cp01568g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Combined DFT and FTIR investigations reveal interesting hydrogen bonding interactions between dimethyl sulfoxide and an ether-functionalized imidazolium-based ionic liquid.
Collapse
Affiliation(s)
- Yu Zhou
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Xianzhen Xu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Shida Gong
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Hong Chen
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
- China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology
- Tsinghua University
- Beijing 100084
- China
| | | |
Collapse
|
11
|
Zeng HJ, Menges FS, Johnson MA. Comment on “C–D Vibration at C2 Position of Imidazolium Cation as a Probe of the Ionic Liquid Microenvironment”. J Phys Chem A 2019; 124:755-756. [DOI: 10.1021/acs.jpca.9b10728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helen J. Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Fabian S. Menges
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Mark A. Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|