1
|
Chaudhuri D, Chowdhury D, Chakraborty S, Bhatt M, Chowdhury R, Dutta A, Mistry A, Haldar S. Structurally different chemical chaperones show similar mechanical roles with independent molecular mechanisms. NANOSCALE 2024; 16:2540-2551. [PMID: 38214221 DOI: 10.1039/d3nr00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Osmolytes are well known to protect the protein structure against different chemical and physical denaturants. Since their actions with protein surfaces are mechanistically complicated and context dependent, the underlying molecular mechanism is not fully understood. Here, we combined single-molecule magnetic tweezers and molecular dynamics (MD) simulation to explore the mechanical role of osmolytes from two different classes, trimethylamine N-oxide (TMAO) and trehalose, as mechanical stabilizers of protein structure. We observed that these osmolytes increase the protein L mechanical stability by decreasing unfolding kinetics while accelerating the refolding kinetics under force, eventually shifting the energy landscape toward the folded state. These osmolytes mechanically stabilize the protein L and plausibly guide them to more thermodynamically robust states. Finally, we observed that osmolyte-modulated protein folding increases mechanical work output up to twofold, allowing the protein to fold under a higher force regime and providing a significant implication for folding-induced structural stability in proteins.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Chemistry, Ashoka University, Sonepat, Haryana, India.
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Madhu Bhatt
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Rudranil Chowdhury
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Aakashdeep Dutta
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Ayush Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Shubhasis Haldar
- Department of Chemistry, Ashoka University, Sonepat, Haryana, India.
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal, India
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| |
Collapse
|
2
|
Doffini V, Liu H, Liu Z, Nash MA. Iterative Machine Learning for Classification and Discovery of Single-Molecule Unfolding Trajectories from Force Spectroscopy Data. NANO LETTERS 2023; 23:10406-10413. [PMID: 37933959 DOI: 10.1021/acs.nanolett.3c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
We report the application of machine learning techniques to expedite classification and analysis of protein unfolding trajectories from force spectroscopy data. Using kernel methods, logistic regression, and triplet loss, we developed a workflow called Forced Unfolding and Supervised Iterative Online (FUSION) learning where a user classifies a small number of repeatable unfolding patterns encoded as images, and a machine is tasked with identifying similar images to classify the remaining data. We tested the workflow using two case studies on a multidomain XMod-Dockerin/Cohesin complex, validating the approach first using synthetic data generated with a Monte Carlo algorithm and then deploying the method on experimental atomic force spectroscopy data. FUSION efficiently separated traces that passed quality filters from unusable ones, classified curves with high accuracy, and identified unfolding pathways that were undetected by the user. This study demonstrates the potential of machine learning to accelerate data analysis and generate new insights in protein biophysics.
Collapse
Affiliation(s)
- Vanni Doffini
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Swiss Nanoscience Institute, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Franz F, Tapia-Rojo R, Winograd-Katz S, Boujemaa-Paterski R, Li W, Unger T, Albeck S, Aponte-Santamaria C, Garcia-Manyes S, Medalia O, Geiger B, Gräter F. Allosteric activation of vinculin by talin. Nat Commun 2023; 14:4311. [PMID: 37463895 DOI: 10.1038/s41467-023-39646-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
The talin-vinculin axis is a key mechanosensing component of cellular focal adhesions. How talin and vinculin respond to forces and regulate one another remains unclear. By combining single-molecule magnetic tweezers experiments, Molecular Dynamics simulations, actin-bundling assays, and adhesion assembly experiments in live cells, we here describe a two-ways allosteric network within vinculin as a regulator of the talin-vinculin interaction. We directly observe a maturation process of vinculin upon talin binding, which reinforces the binding to talin at a rate of 0.03 s-1. This allosteric transition can compete with force-induced dissociation of vinculin from talin only at forces up to 10 pN. Mimicking the allosteric activation by mutation yields a vinculin molecule that bundles actin and localizes to focal adhesions in a force-independent manner. Hence, the allosteric switch confines talin-vinculin interactions and focal adhesion build-up to intermediate force levels. The 'allosteric vinculin mutant' is a valuable molecular tool to further dissect the mechanical and biochemical signalling circuits at focal adhesions and elsewhere.
Collapse
Affiliation(s)
- Florian Franz
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK.
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK.
| | - Sabina Winograd-Katz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Wenhong Li
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Unger
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- The Dana and Yossie Hollander Center for Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Camilo Aponte-Santamaria
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, Strand, WC2R 2LS London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, London, UK
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.
| | - Benjamin Geiger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Mathematikon, INF 205, 69120, Heidelberg, Germany.
- IMSEAM, Heidelberg University, INF 225, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Scott S, Weiss M, Selhuber-Unkel C, Barooji YF, Sabri A, Erler JT, Metzler R, Oddershede LB. Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking. Phys Chem Chem Phys 2023; 25:1513-1537. [PMID: 36546878 DOI: 10.1039/d2cp01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.
Collapse
Affiliation(s)
- Shane Scott
- Institute of Physiology, Kiel University, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering, Heidelberg University, D-69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Younes F Barooji
- Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | - Adal Sabri
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Janine T Erler
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, D-14476 Potsdam, Germany.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | | |
Collapse
|
5
|
Nowitzke J, Popa I. What Is the Force-per-Molecule Inside a Biomaterial Having Randomly Oriented Units? J Phys Chem Lett 2022; 13:7139-7146. [PMID: 35901371 DOI: 10.1021/acs.jpclett.2c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both synthetic and natural protein-based materials are made of randomly oriented cross-linked molecules. Here we introduce a coarse-grained approach to estimate the average force-per-molecule for materials made from globular proteins. Our approach has three steps: placement of molecules inside a unit volume, cross-linking, and trimming to remove the protein domains that do not participate to the force response. Following this procedure, we estimate the number of active domains per cross-section area, that allows for a direct calculation of the force-per-domain. Among the variables considered, we found that concentration was the most sensitive parameter. We then synthesized protein hydrogels made from BSA and polyprotein L and measured the stresses that these materials can withstand. We found that forces-per-molecules of up to 17 pN per domain can be obtained experimentally using protein hydrogels. Our approach represents an important step toward understanding the scaling of tension in biomaterials.
Collapse
Affiliation(s)
- Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
6
|
Dahal N, Sharma S, Phan B, Eis A, Popa I. Mechanical regulation of talin through binding and history-dependent unfolding. SCIENCE ADVANCES 2022; 8:eabl7719. [PMID: 35857491 DOI: 10.1126/sciadv.abl7719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Talin is a force-sensing multidomain protein and a major player in cellular mechanotransduction. Here, we use single-molecule magnetic tweezers to investigate the mechanical response of the R8 rod domain of talin. We find that under various force cycles, the R8 domain of talin can display a memory-dependent behavior: At the same low force (<10 pN), the same protein molecule shows vastly different unfolding kinetics. This history-dependent behavior indicates the evolution of a unique force-induced native state. We measure through mechanical unfolding that talin R8 domain binds one of its ligands, DLC1, with much higher affinity than previously reported. This strong interaction can explain the antitumor response of DLC1 by regulating inside-out activation of integrins. Together, our results paint a complex picture for the mechanical unfolding of talin in the physiological range and a new mechanism of function of DLC1 to regulate inside-out activation of integrins.
Collapse
Affiliation(s)
- Narayan Dahal
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Binh Phan
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Annie Eis
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| |
Collapse
|
7
|
Chetrit E, Sharma S, Maayan U, Pelah MG, Klausner Z, Popa I, Berkovich R. Nonexponential kinetics in captured in sequential unfolding of polyproteins over a range of loads. Curr Res Struct Biol 2022; 4:106-117. [PMID: 35540955 PMCID: PMC9079174 DOI: 10.1016/j.crstbi.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
While performing under mechanical loads in vivo, polyproteins are vitally involved in cellular mechanisms such as regulation of tissue elasticity and mechano-transduction by unfolding their comprising domains and extending them. It is widely thought that the process of sequential unfolding of polyproteins follows an exponential kinetics as the individual unfolding events exhibit identical and identically distributed (iid) Poisson behavior. However, it was shown that under high loads, the sequential unfolding kinetics displays nonexponential kinetics that alludes to aging by a subdiffusion process. Statistical order analysis of this kinetics indicated that the individual unfolding events are not iid, and cannot be defined as a Poisson (memoryless) process. Based on numerical simulations it was argued that this behavior becomes less pronounced with lowering the load, therefore it is to be expected that polyproteins unfolding under lower forces will follow a Poisson behavior. This expectation serves as the motivation of the current study, in which we investigate the effect of force lowering on the unfolding kinetics of Poly-L8 under varying loads, specifically high (150, 100 pN) and moderate-low (45, 30, 20 pN) forces. We found that a hierarchy among the unfolding events still exists even under low loads, again resulting in nonexponential behavior. We observe that analyzing the dwell-time distributions with stretched-exponentials and power laws give rise to different phenomenological trends. Using statistical order analysis, we demonstrated that even under the lowest load, the sequential unfolding cannot be considered as iid, in accord with the power law distribution. Additional free energy analysis revealed the contribution of the unfolded segments elasticity that scales with the force on the overall one-dimensional contour of the energy landscape, but more importantly, it discloses the hierarchy within the activation barriers during sequential unfolding that account for the observed nonexponentiality. Poly-L8 unfolding shows nonexponential kinetics at forces ranging from 150 to 20 pN. Different phenomenological trends are observed for the dwell-time distributions. The unfolding events were shown to be dependent and not identically distributed. Free energy analysis reveals elastic impact and hierarchy in the unfolding barriers.
Collapse
|
8
|
Slawinski M, Khoury LR, Sharma S, Nowitzke J, Gutzman JH, Popa I. Kinetic Method of Producing Pores Inside Protein-Based Biomaterials without Compromising Their Structural Integrity. ACS Biomater Sci Eng 2022; 8:1132-1142. [PMID: 35188361 DOI: 10.1021/acsbiomaterials.1c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels made from globular proteins cross-linked covalently into a stable network are becoming an important type of biomaterial, with applications in artificial tissue design and cell culture scaffolds, and represent a promising system to study the mechanical and biochemical unfolding of proteins in crowded environments. Due to the small size of the globular protein domains, typically 2-5 nm, the primary network allows for a limited transfer of protein molecules and prevents the passing of particles and aggregates with dimensions over 100 nm. Here, we demonstrate a method to produce protein materials with micrometer-sized pores and increased permeability. Our approach relies on forming two competing networks: a covalent network made from cross-linked bovine serum albumin (BSA) proteins via a light-activated reaction and a physical network triggered by the aggregation of a polysaccharide, alginate, in the presence of Ca2+ ions. By fine-tuning the reaction times, we produce porous-protein hydrogels that retain the mechanical characteristics of their less-porous counterparts. We further describe a simple model to investigate the kinetic balance between the nucleation of alginate and cross-linking of BSA molecules and find the upper rate of the alginate aggregation reaction driving pore formation. By enabling a more significant permeability for protein-based materials without compromising their mechanical response, our method opens new vistas into studying protein-protein interactions and cell growth and designing novel affinity methods.
Collapse
Affiliation(s)
- Marina Slawinski
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Luai R Khoury
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States.,Department of Materials Science and Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
9
|
Rico-Pasto M, Alemany A, Ritort F. Force-Dependent Folding Kinetics of Single Molecules with Multiple Intermediates and Pathways. J Phys Chem Lett 2022; 13:1025-1032. [PMID: 35072478 PMCID: PMC9882750 DOI: 10.1021/acs.jpclett.1c03521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most single-molecule studies derive the kinetic rates of native, intermediate, and unfolded states from equilibrium hopping experiments. Here, we apply the Kramers kinetic diffusive model to derive the force-dependent kinetic rates of intermediate states from nonequilibrium pulling experiments. From the kinetic rates, we also extract the force-dependent kinetic barriers and the equilibrium folding energies. We apply our method to DNA hairpins with multiple folding pathways and intermediates. The experimental results agree with theoretical predictions. Furthermore, the proposed nonequilibrium single-molecule approach permits us to characterize kinetic and thermodynamic properties of native, unfolded, and intermediate states that cannot be derived from equilibrium hopping experiments.
Collapse
Affiliation(s)
- Marc Rico-Pasto
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| | - Anna Alemany
- Department
of Anatomy and Embryology, Leiden University
Medical Center, Leiden, 2333ZC, The Netherlands
| | - Felix Ritort
- Small
Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, C/Martí i Franqués 1, Barcelona, 08028, Spain
| |
Collapse
|
10
|
Ahmad MA, Olule LJA, Meetani M, Sheikh FA, Blooshi RA, Panicker NG, Mustafa F, Rizvi TA. Detection of SARS-CoV-2 in COVID-19 Patient Nasal Swab Samples Using Signal Processing. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2022; 16:164-174. [PMID: 35582704 PMCID: PMC9088791 DOI: 10.1109/jstsp.2021.3134073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 05/31/2023]
Abstract
This work presents an opto-electrical method that measures the viral nucleocapsid protein and anti-N antibody interactions to differentiate between SARS-CoV-2 negative and positive nasal swab samples. Upon light exposure of the patient nasal swab sample mixed with the anti-N antibody, charge transfer (CT) transitions within the altered protein folds are initiated between the charged amino acids side chain moieties and the peptide backbone that play the role of donor and acceptor groups. A Figure of Merit (FOM) was introduced to correlate the relative variations of the samples with and without antibody at two different voltages. Empirically, SARS-CoV-2 in patient nasal swab samples was detected within two minutes, if an extracted FOM threshold of >1 was achieved; otherwise, the sample wasconsidered negative.
Collapse
Affiliation(s)
- Mahmoud Al Ahmad
- Department of Electrical EngineeringUAE UniversityAl Ain15551UAE
- Zayed Center for Health Sciences (ZCHS)UAE UniversityAl Ain15551UAE
| | | | | | | | | | - Neena G. Panicker
- Department of Biochemistry & Molecular BiologyCMHS UAE UniversityAl Ain17666UAE
| | - Farah Mustafa
- Department of Biochemistry and Molecular BiologyCMHS UAE UniversityAl Ain17666UAE
- Zayed Center for Health Sciences (ZCHS)UAE UniversityAl Ain15551UAE
| | - Tahir A. Rizvi
- Department of Microbiology and ImmunologyCMHS UAE UniversityAl Ain17666UAE
- Zayed Center for Health Sciences (ZCHS)UAE UniversityAl Ain15551UAE
| |
Collapse
|
11
|
Nie J, Deng Y, Tian F, Shi S, Zheng P. Detection of weak non-covalent cation-π interactions in NGAL by single-molecule force spectroscopy. NANO RESEARCH 2022; 15:4251-4257. [PMID: 35574260 PMCID: PMC9077643 DOI: 10.1007/s12274-021-4065-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 05/14/2023]
Abstract
Cation-π interaction is an electrostatic interaction between a cation and an electron-rich arene. It plays an essential role in many biological systems as a vital driving force for protein folding, stability, and receptor-ligand interaction/recognition. To date, the discovery of most cation-π interactions in proteins relies on the statistical analyses of available three-dimensional (3D) protein structures and corresponding computational calculations. However, their experimental verification and quantification remain sparse at the molecular level, mainly due to the limited methods to dynamically measure such a weak non-covalent interaction in proteins. Here, we use atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of protein neutrophil gelatinase-associated lipocalin (also known as NGAL, siderocalin, lipocalin 2) that can bind iron through the cation-π interactions between its three cationic residues and the iron-binding tri-catechols. Based on a site-specific cysteine engineering and anchoring method, we first characterized the stability and unfolding pathways of apo-NGAL. Then, the same NGAL but bound with the iron-catechol complexes through the cation-π interactions as a holo-form was characterized. AFM measurements demonstrated stronger stabilities and kinetics of the holo-NGAL from two pulling sites, F122 and F133. Here, NGAL is stretched from the designed cysteine close to the cationic residues for a maximum unfolding effect. Thus, our work demonstrates high-precision detection of the weak cation-π interaction in NGAL. Electronic Supplementary Material Supplementary material (additional SDS-PAGE, UV-vis, protein sequences, and more experimental methods) is available in the online version of this article at 10.1007/s12274-021-4065-9.
Collapse
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing, 210023 China
| |
Collapse
|
12
|
Ahmad MA, Mustafa F, Panicker N, Rizvi TA. Optical Detection of SARS-CoV-2 Utilizing Antigen-Antibody Binding Interactions. SENSORS 2021; 21:s21196596. [PMID: 34640920 PMCID: PMC8512587 DOI: 10.3390/s21196596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19) pandemic, is sweeping the world today. This study investigates the optical detection of SARS-CoV-2, utilizing the antigen-antibody binding interactions utilizing a light source from a smart phone and a portable spectrophotometer. The proof-of-concept is shown by detecting soluble preparations of spike protein subunits from SARS-CoV-2, followed by detection of the actual binding potential of the SARS-CoV-2 proteins with their corresponding antigens. The measured binding interactions for RBD and NCP proteins with their corresponding antibodies under different conditions have been measured and analyzed. Based on these observations, a “hump or spike” in light intensity is observed when a specific molecular interaction takes place between two proteins. The optical responses could further be analyzed using the principle component analysis technique to enhance and allows precise detection of the specific target in a multi-protein mixture.
Collapse
Affiliation(s)
- Mahmoud Al Ahmad
- Electrical Engineering Department, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (F.M.); (T.A.R.)
- Correspondence: ; Tel.: +971-37135150
| | - Farah Mustafa
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (F.M.); (T.A.R.)
- Department of Biochemistry, College of Medicine & Health Sciences, Al Ain 20000, United Arab Emirates;
| | - Neena Panicker
- Department of Biochemistry, College of Medicine & Health Sciences, Al Ain 20000, United Arab Emirates;
| | - Tahir A. Rizvi
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (F.M.); (T.A.R.)
- Department of Microbiology and Immunology, College of Medicine & Health Sciences, Al Ain 20000, United Arab Emirates
| |
Collapse
|
13
|
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
15
|
Eckels EC, Chaudhuri D, Chakraborty S, Echelman DJ, Haldar S. DsbA is a redox-switchable mechanical chaperone. Chem Sci 2021; 12:11109-11120. [PMID: 34522308 PMCID: PMC8386657 DOI: 10.1039/d1sc03048e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
DsbA is a ubiquitous bacterial oxidoreductase that associates with substrates during and after translocation, yet its involvement in protein folding and translocation remains an open question. Here we demonstrate a redox-controlled chaperone activity of DsbA, on both cysteine-containing and cysteine-free substrates, using magnetic tweezers-based single molecule force spectroscopy that enables independent measurements of oxidoreductase activity and chaperone behavior. Interestingly we found that this chaperone activity is tuned by the oxidation state of DsbA; oxidized DsbA is a strong promoter of folding, but the effect is weakened by the reduction of the catalytic CXXC motif. We further localize the chaperone binding site of DsbA using a seven-residue peptide which effectively blocks the chaperone activity. We found that the DsbA assisted folding of proteins in the periplasm generates enough mechanical work to decrease the ATP consumption needed for periplasmic translocation by up to 33%.
Collapse
Affiliation(s)
- Edward C Eckels
- Department of Biological Sciences, Columbia University New York NY 10027 USA
- Department of Internal Medicine, Columbia University Medical Center New York NY 10032 USA
| | - Deep Chaudhuri
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Daniel J Echelman
- Department of Biological Sciences, Columbia University New York NY 10027 USA
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| |
Collapse
|
16
|
Maciuba K, Zhang F, Kaiser CM. Facile tethering of stable and unstable proteins for optical tweezers experiments. Biophys J 2021; 120:2691-2700. [PMID: 33989618 DOI: 10.1016/j.bpj.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022] Open
Abstract
Single-molecule force spectroscopy with optical tweezers has emerged as a powerful tool for dissecting protein folding. The requirement to stably attach "molecular handles" to specific points in the protein of interest by preparative biochemical techniques is a limiting factor in applying this methodology, especially for large or unstable proteins that are difficult to produce and isolate. Here, we present a streamlined approach for creating stable and specific attachments using autocatalytic covalent tethering. The high specificity of coupling allowed us to tether ribosome-nascent chain complexes, demonstrating its suitability for investigating complex macromolecular assemblies. We combined this approach with cell-free protein synthesis, providing a facile means of preparing samples for single-molecule force spectroscopy. The workflow eliminates the need for biochemical protein purification during sample preparation for single-molecule measurements, making structurally unstable proteins amenable to investigation by this powerful single-molecule technique. We demonstrate the capabilities of this approach by carrying out pulling experiments with an unstructured domain of elongation factor G that had previously been refractory to analysis. Our approach expands the pool of proteins amenable to folding studies, which should help to reduce existing biases in the currently available set of protein folding models.
Collapse
Affiliation(s)
- Kevin Maciuba
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Fan Zhang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
17
|
Miyagawa A, Okada T. Particle Manipulation with External Field; From Recent Advancement to Perspectives. ANAL SCI 2021; 37:69-78. [PMID: 32921654 DOI: 10.2116/analsci.20sar03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Physical forces, such as dielectric, magnetic, electric, optical, and acoustic force, provide useful principles for the manipulation of particles, which are impossible or difficult with other approaches. Microparticles, including polymer particles, liquid droplets, and biological cells, can be trapped at a particular position and are also transported to arbitrary locations in an appropriate external physical field. Since the force can be externally controlled by the field strength, we can evaluate physicochemical properties of particles from the shift of the particle location. Most of the manipulation studies are conducted for particles of sub-micrometer or larger dimensions, because the force exerted on nanomaterials or molecules is so weak that their direct manipulation is generally difficult. However, the behavior, interactions, and reactions of such small substances can be indirectly evaluated by observing microparticles, on which the targets are tethered, in a physical field. We review the recent advancements in the manipulation of particles using a physical force and discuss its potentials, advantages, and limitations from fundamental and practical perspectives.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan.
| |
Collapse
|
18
|
Straková K, López-Andarias J, Jiménez-Rojo N, Chambers JE, Marciniak SJ, Riezman H, Sakai N, Matile S. HaloFlippers: A General Tool for the Fluorescence Imaging of Precisely Localized Membrane Tension Changes in Living Cells. ACS CENTRAL SCIENCE 2020; 6:1376-1385. [PMID: 32875078 PMCID: PMC7453570 DOI: 10.1021/acscentsci.0c00666] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Indexed: 05/03/2023]
Abstract
Tools to image membrane tension in response to mechanical stimuli are badly needed in mechanobiology. We have recently introduced mechanosensitive flipper probes to report quantitatively global membrane tension changes in fluorescence lifetime imaging microscopy (FLIM) images of living cells. However, to address specific questions on physical forces in biology, the probes need to be localized precisely in the membrane of interest (MOI). Herein we present a general strategy to image the tension of the MOI by tagging our newly introduced HaloFlippers to self-labeling HaloTags fused to proteins in this membrane. The critical challenge in the construction of operational HaloFlippers is the tether linking the flipper and the HaloTag: It must be neither too taut nor too loose, be hydrophilic but lipophilic enough to passively diffuse across membranes to reach the HaloTags, and allow partitioning of flippers into the MOI after the reaction. HaloFlippers with the best tether show localized and selective fluorescence after reacting with HaloTags that are close enough to the MOI but remain nonemissive if the MOI cannot be reached. Their fluorescence lifetime in FLIM images varies depending on the nature of the MOI and responds to myriocin-mediated sphingomyelin depletion as well as to osmotic stress. The response to changes in such precisely localized membrane tension follows the validated principles, thus confirming intact mechanosensitivity. Examples covered include HaloTags in the Golgi apparatus, peroxisomes, endolysosomes, and the ER, all thus becoming accessible to the selective fluorescence imaging of membrane tension.
Collapse
Affiliation(s)
- Karolína Straková
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Javier López-Andarias
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
- (J.L.-A.)
| | - Noemi Jiménez-Rojo
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Joseph E. Chambers
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Stefan J. Marciniak
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Howard Riezman
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School
of Chemistry and Biochemistry and National Centre of Competence in
Research (NCCR) Chemical Biology, University
of Geneva, Geneva 1211, Switzerland
- (S.M.)
| |
Collapse
|
19
|
Marszalek PE, Oberhauser AF. Meeting report - NSF-sponsored workshop 'Progress and Prospects of Single-Molecule Force Spectroscopy in Biological and Chemical Sciences'. J Cell Sci 2020; 133:jcs251421. [PMID: 32817164 PMCID: PMC10679350 DOI: 10.1242/jcs.251421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The goals of the workshop organized by Piotr Marszalek and Andres Oberhauser that took place between 29 August and 1 September 2019 at Duke University were to bring together leading experts and junior researchers to review past accomplishments, recent advances and limitations in the single-molecule force spectroscopy field, which examines nanomechanical forces in diverse biological processes and pathologies. Talks were organized into four sessions, and two in-depth roundtable discussion sessions were held.
Collapse
Affiliation(s)
- Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
20
|
Sharma S, Subramani S, Popa I. Does protein unfolding play a functional role in vivo? FEBS J 2020; 288:1742-1758. [PMID: 32761965 DOI: 10.1111/febs.15508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics.
Collapse
Affiliation(s)
- Sabita Sharma
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Smrithika Subramani
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|