1
|
Batista ANL, Valverde AL, Nafie LA, Batista JM. Stereochemistry of natural products from vibrational circular dichroism. Chem Commun (Camb) 2024; 60:10439-10450. [PMID: 39234927 DOI: 10.1039/d4cc02481h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Secondary metabolites from land and marine (micro)organisms have been at the focus of the drug discovery process for many years. One of the reasons for this success is nature's incredible ability to create intricate molecular scaffolds. Such structural richness, however, makes the structural elucidation, and the absolute configuration assignment in particular, a challenging process. Vibrational circular dichroism (VCD) has emerged as one of the most reliable and versatile methods to unambiguously assign both the absolute configuration and conformations of chiral molecules in solution. Although VCD is no longer a curiosity in the field of molecular spectroscopy after 50 years since its first report, it is still underutilized by natural product chemists worldwide for varying reasons. Herein, we highlight the evolution of the application of VCD to natural product chemistry, focusing on its strengths as well as points that still need improvement. General guidelines for the correct application of VCD to stereochemical studies are also provided.
Collapse
Affiliation(s)
- Andrea N L Batista
- Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista s/n, 24020-141, Niterói-RJ, Brazil
| | - Alessandra L Valverde
- Institute of Chemistry, Fluminense Federal University, Outeiro de São João Batista s/n, 24020-141, Niterói-RJ, Brazil
| | - Laurence A Nafie
- Department of Chemistry, 1-014CST, Syracuse University, 13244-4100, Syracuse-NY, USA
| | - João M Batista
- Federal University of São Paulo, Institute of Science and Technology, R. Talim 330, 12231-280, São José dos Campos-SP, Brazil.
| |
Collapse
|
2
|
Mándi A, Rimóczi A, Vasas A, Hohmann J, Swamy MMM, Monde K, Barta RA, Kicsák M, Komáromi I, Fehér K, Kurtán T. Testing the Simplified Molecular Dynamics Approach to Improve the Reproduction of ECD Spectra and Monitor Aggregation. Int J Mol Sci 2024; 25:6453. [PMID: 38928181 PMCID: PMC11204327 DOI: 10.3390/ijms25126453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
A simplified molecular-dynamics-based electronic circular dichroism (ECD) approach was tested on three condensed derivatives with limited conformational flexibility and an isochroman-2H-chromene hybrid, the ECD spectra of which could not be precisely reproduced by the conventional ECD calculation protocol. Application of explicit solvent molecules at the molecular mechanics (MD) level in the dynamics simulations and subsequent TDDFT-ECD calculation for the unoptimized MD structures was able to improve the agreements between experimental and computed spectra. Since enhancements were achieved even for molecules with limited conformational flexibility, deformations caused by the solvent molecules and multitudes of conformers produced with unoptimized geometries seem to be key factors for better agreement. The MD approach could confirm that aggregation of the phenanthrene natural product luzulin A had a significant contribution to a specific wavelength range of the experimental ECD. The MD approach has proved that dimer formation occurred in solution and this was responsible for the anomalous ECD spectrum. The scope and limitations of the method have also been discussed.
Collapse
Affiliation(s)
- Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| | - Aliz Rimóczi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Andrea Vasas
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (A.V.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Judit Hohmann
- Institute of Pharmacognosy, University of Szeged, 6720 Szeged, Hungary; (A.V.); (J.H.)
- HUN-REN-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary
| | - Mahadeva M. M. Swamy
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan; (M.M.M.S.); (K.M.)
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Sapporo 001-0021, Japan; (M.M.M.S.); (K.M.)
| | - Roland A. Barta
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Máté Kicsák
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| | - István Komáromi
- Vascular Biology, Thrombosis and Hemostasis Research Group, Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Krisztina Fehér
- HUN-REN–UD Molecular Recognition and Interaction Research Group, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary; (A.R.); (R.A.B.); (M.K.); (T.K.)
| |
Collapse
|
3
|
Fusè M, Mazzeo G, Longhi G, Abbate S, Yang Q, Bloino J. Scaling-up VPT2: A feasible route to include anharmonic correction on large molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123969. [PMID: 38330757 DOI: 10.1016/j.saa.2024.123969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Vibrational analysis plays a crucial role in the investigation of molecular systems. Though methodologies like second-order vibrational perturbation theory (VPT2) have paved the way to more accurate simulations, the computational cost remains a difficult barrier to overcome when the molecular size increases. Building upon recent advances in the identification of resonances, we propose an approach making anharmonic simulations possible for large-size systems, typically unreachable by standard means. This relies on the fact that, often, only portions of the whole spectra are of actual interest. Therefore, the anharmonic corrections can be included selectively on subsets of normal modes directly related to the regions of interest. Starting from the VPT2 equations, we evaluate rigorously and systematically the impact of the truncated anharmonic treatment onto simulations. The limit and feasibility of the reduced-dimensionality approach are detailed, starting on a smaller model system. The methodology is then challenged on the IR absorption and vibrational circular dichroism spectra of an organometallic complex in three different spectral ranges.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy.
| |
Collapse
|
4
|
Yang Y, Alshalalfeh M, Xu Y. Conformational distributions of tetrahydro-2-turoic acid in water at different pH values by their IR and vibrational circular dichroism spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123634. [PMID: 37976578 DOI: 10.1016/j.saa.2023.123634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Infrared (IR) and vibrational circular dichroism (VCD) spectra of tetrahydro-2-furoic acid (THFA) in aqueous solutions under several different pH conditions were recorded. To interpret the IR and VCD spectra of THFA obtained in highly acidic and basic aqueous solutions, extensive and systematic conformational searches were conducted to acquire the low-energy minima for both the neutral and deprotonated forms of THFA species, as well as their hydrated clusters. This was accomplished by using the conformer-rotamer ensemble sampling tool (CREST) with an implicit solvation model for water. The CREST candidates were further optimized at the B3LYP-D3BJ/def2-TZVP level of theory. The simulated VCD spectra of the neutral THFA conformers in the polarizable continuum model (PCM) of water alone exhibit little agreement with the experimental data under highly acidic conditions. Applying the clusters-in-a-liquid solvation model by considering the monohydrate THFA conformers in the PCM of water, significantly improved agreement with the experimental data. Similarly, the deprotonated THFA species solvated with one to four explicit water molecules in the PCM of water were considered. While the IR and VCD spectra of the deprotonated THFA monohydrate conformers offer the best agreement with the experimental data, other larger hydrated clusters, particularly the dihydrates, also contribute to the spectra. Through the synergistic combined experimental and theoretical approach used in the study, comprehensive conformational distributions of the predominant THFA species across various pH conditions were extracted.
Collapse
Affiliation(s)
- Yanqing Yang
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Mutasem Alshalalfeh
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
5
|
Taherivardanjani S, Wylie L, Dötzer R, Kirchner B. Exploring the Influence of the Phosphorus-Heteroatom Substitution in Nicotine on Its Electronic and Vibrational Spectroscopic Properties. Chemistry 2024; 30:e202302534. [PMID: 37984418 DOI: 10.1002/chem.202302534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
The influence of phosphorus substitution of nitrogen in heterocyclic compounds on the vibrational spectroscopy as well as frontier molecular orbitals are analyzed. Nicotine with two nitrogen atoms in its structure is taken as the sample system to be studied computationally. By replacing the nitrogen atom in one or both rings of this molecule with phosphorus, three nicotine derivatives are created. The vibrational circular dichroism and infrared spectra of these four molecules in their monomer state, as well as the assemblies up to trimers are determined. The aforementioned spectra are calculated using static quantum chemical calculations employing a cluster-weighted approach. The calculated gas phase spectra of nicotine are compared to their respective experimental spectra. It is observed that the nicotine derivatives with phosphorus in the methylpyrrolidine ring have considerably different gas phase and bulk phase vibrational circular dichroism spectra when compared to nicotine. The phosphorus substitution reduces the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital as well as altering the polarizability and reactivity of the investigated molecules.
Collapse
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| | | | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, D-53115, Bonn, Germany
| |
Collapse
|
6
|
Covington CL, Puente AR, Polavarapu PL. Pitfalls in the Optimization of Conformer Populations to Maximize the Similarity between Predicted and Experimental Chiroptical Spectra. J Phys Chem A 2024; 128:129-138. [PMID: 38154123 DOI: 10.1021/acs.jpca.3c06544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The conformational populations of pantolactone, epichlorohydrin, and N-acetyl-tryptophan methyl ester were investigated by using similarity analysis between their calculated and experimental chiroptical spectra. By performing the analysis on pantolactone using two different chiroptical methods, namely, vibrational circular dichroism and Raman optical activity, it was found that the optimal sets of conformers do not match between the two methods, indicating that the conformational populations obtained by optimizing the similarity between calculated and experimental spectra are unlikely to be more accurate than energy-based Boltzmann populations. Also, it was found for pantolactone, epichlorohydrin, and N-acetyl-tryptophan methyl ester that the similarity between calculated and experimental spectra would often not vary significantly if each of the populated conformers was discarded, one at a time. This observation indicates that more than one set of conformers can provide acceptable similarity between the predicted and experimental spectra. Therefore, the correct set of conformers cannot be accurately determined by similarity analysis.
Collapse
Affiliation(s)
- Cody L Covington
- Department of Chemistry, Austin Peay State University, Clarksville, Tennessee 37044, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
7
|
Puente AR, Polavarapu PL. Influence of microsolvation on vibrational circular dichroism spectra in dimethyl sulfoxide solvent: A Bottom-Up approach using Quantum cluster growth. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123231. [PMID: 37562213 DOI: 10.1016/j.saa.2023.123231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Chiroptical spectroscopic measurements serve as routine methods to assign the absolute configuration of chiral compounds and interpret their conformational behavior in solution. One common challenge is the use of strongly hydrogen-bonding solvents, which can significantly bias the conformational ensemble and affect the vibrational circular dichroism (VCD) active bands in solution. One such solvent is dimethyl sulfoxide (DMSO)-an excellent solvent for stubborn compounds-that must be explicitly considered in VCD analysis. Explicit consideration of solvent remains a critical challenge in chiroptical spectroscopy due to the need to explore solute-solvent conformational space and the computational expense in modeling these clusters. Interested in the recent development of the Quantum Cluster Growth (QCG) program by the Grimme lab, we set out to model and interpret previously reported VCD spectra for several molecules using their efficient program. Our purposes are two-fold: (1) to investigate the applicability of the QCG program to the problem of reproducing VCD spectra in DMSO solvent and (2) to identify limitations in using this approach. We find that we can conveniently model and analyze the VCD spectra of investigated molecules in DMSO. However, the final set of conformers used for VCD calculations are functional dependent and different sets of conformers can provide satisfactory quantitative agreement between experimental and predicted VCD spectra. We hope that this study provides guidance for future chiroptical studies in the challenging DMSO solvent.
Collapse
Affiliation(s)
- Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
8
|
Merten C. Modelling solute-solvent interactions in VCD spectra analysis with the micro-solvation approach. Phys Chem Chem Phys 2023; 25:29404-29414. [PMID: 37881890 DOI: 10.1039/d3cp03408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy has become an important part of the (stereo-)chemists' toolbox as a reliable method for the determination of absolute configurations. Being the chiroptical version of infrared spectroscopy, it has also been recognized as being very sensitive to conformational changes and intermolecular interactions. This sensitivity originates from the fact that the VCD spectra of individual conformers are often more different than their IR spectra, so that changes in conformational distributions or band positions and intensities become more pronounced. What is an advantage for studies focussing on intermolecular interactions can, however, quickly turn into a major obstacle during AC determinations: solute-solvent interactions can have a strong influence on spectral signatures and they must be accurately treated when simulating VCD and IR spectra. In this perspective, we showcase selected examples which exhibit particularly pronounced solvent effects. It is demonstrated that it is typically sufficient to model solute-solvent interactions by placing single solvent molecules near hydrogen bonding sites of the solute and subsequently use the optimized structures for spectra simulations. This micro-solvation approach works reasonably well for medium-sized, not too conformationally flexible molecules. We thus also discuss its limitations and outline the next steps that method development needs to take in order to further improve the workflows for VCD spectra predictions.
Collapse
Affiliation(s)
- Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
9
|
Perera AS, Carlson CD, Cheramy J, Xu Y. Infrared and vibrational circular dichroism spectra of methyl β-D-glucopyranose in water: The application of the quantum cluster growth and clusters-in-a-liquid solvation models. Chirality 2023; 35:718-731. [PMID: 37162747 DOI: 10.1002/chir.23576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
The infrared (IR) and vibrational circular dichroism (VCD) spectra of methyl β-D-glucopyranose in water were measured. Both implicit and explicit solvation models were utilized to explain the observed spectra. The vast body of existing experimental and theoretical data suggested that about eight explicit water molecules are needed to account for the solvent effects, supported by the current Quantum Cluster Growth (QCG) analysis. Extensive manual and systematic conformational searches of the molecular target and its water clusters were carried out by using a recently developed conformational searching tool, conformer-rotamer ensemble sampling tool (CREST), and the microsolvation model in the associated QCG code. The Boltzmann averaged IR and VCD spectra of the methyl β-D-glucopyranose-(water)n (n = 8) conformers in the PCM of water provide better agreement with the experimental ones than those with n = 0, 1, and 2. The explicit solvation with eight water molecules was shown to greatly modify the conformational preference of methyl β-D-glucopyranose from its monomeric form. Further analyses show that the result is consistent with the existence of long-lived methyl β-D-glucopyranose monohydrates with the additional explicit water effects being accounted for with the quantum mechanical treatment of the other seven close-by water molecules in the PCM of water.
Collapse
Affiliation(s)
| | - Colton D Carlson
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Cheramy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Groß J, Kühlborn J, Pusch S, Weber C, Andernach L, Renzer G, Eckhardt P, Brauer J, Opatz T. Comparison of different density functional theory methods for the calculation of vibrational circular dichroism spectra. Chirality 2023; 35:753-765. [PMID: 37227055 DOI: 10.1002/chir.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The determination of the absolute configuration (AC) of an organic molecule is still a challenging task for which the combination of spectroscopic with quantum-mechanical methods has become a promising approach. In this study, we investigated the accuracy of DFT methods (480 overall combinations of 15 functionals, 16 basis sets, and 2 solvation models) to calculate the VCD spectra of six chiral organic molecules in order to benchmark their capability to facilitate the determination of the AC.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jonas Kühlborn
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Pusch
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Carina Weber
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Lars Andernach
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Galit Renzer
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jan Brauer
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Dobšíková K, Michal P, Spálovská D, Kuchař M, Paškanová N, Jurok R, Kapitán J, Setnička V. Conformational analysis of amphetamine and methamphetamine: a comprehensive approach by vibrational and chiroptical spectroscopy. Analyst 2023; 148:1337-1348. [PMID: 36857656 DOI: 10.1039/d2an02014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
After cannabis, the most commonly used illicit substance worldwide is amphetamine and its derivatives, such as methamphetamine, with an ever-increasing number of synthetic modifications. Thus, fast and reliable methods are needed to identify them according to their spectral patterns and structures. Here, we have investigated the use of molecular spectroscopy methods to describe the 3D structures of these substances in a solution that models the physiological environment. The substances were analyzed by Raman and infrared (IR) absorption spectroscopy and by chiroptical methods, vibrational circular dichroism (VCD) and Raman optical activity (ROA). The obtained experimental data were supported by three different computational approaches based on density functional theory (DFT) and molecular dynamics (MD). Successful interpretation relies on good agreement between experimental and predicted spectra. The determination of the conformer populations of the studied molecules was based on maximizing the similarity overlap of weighted conformer spectra by a global minimization algorithm. Very good agreement was obtained between the experimental spectra and optimized-population weighted spectra from MD, providing a detailed insight into the structure of the molecules and their interaction with the solvent. The relative population of three amphetamine and six methamphetamine conformers was determined and is consistent with a previous NMR study. However, this work shows that only a few isolated conformers are not sufficient for the successful interpretation of the spectra, but the entire conformational space needs to be sampled appropriately and explicit interaction with the solvent needs to be included.
Collapse
Affiliation(s)
- Kristýna Dobšíková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Pavel Michal
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Dita Spálovská
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,National Institute of Mental Health, Klecany 250 67, Czech Republic
| | - Natalie Paškanová
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Radek Jurok
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Organic Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
12
|
Machalska E, Zając G, Rode JE. Chirality transfer observed in Raman optical activity spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121604. [PMID: 35835058 DOI: 10.1016/j.saa.2022.121604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Chirality transfer (also called induced chirality) is a phenomenon present in chiroptical spectra that manifests itself as a new band or bands of an achiral molecule interacting with a chiral one. In the Raman optical activity (ROA) spectroscopy, the bands of achiral solvents have been recently observed, but the latest papers have shown that they corresponded to the new ECD-Raman (eCP-Raman) effect. Here, we show an unambiguous example of chirality transfer observed in the ROA spectra. The spectra registered for the (1:1) mixtures of achiral benzonitrile with the enantiomers of 2,2,2-trifluoro-1-phenylethanol, 1-phenylethanol, and 1-phenylethylamine exhibited the v(CN) vibration band at about 2230 cm-1. The ROA measurements were repeated several times to ensure the reliability of the phenomenon. Calculations revealed the CN···HO or CN···HNH hydrogen bond formation accompanied by the π···π or CH···π interactions. The interaction strength was shown to be an important factor for the pronouncement of the ROA chirality transfer effect.
Collapse
Affiliation(s)
- Ewa Machalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-38 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Joanna E Rode
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
13
|
Galimberti DR. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. J Chem Theory Comput 2022; 18:6217-6230. [PMID: 36112978 PMCID: PMC9558311 DOI: 10.1021/acs.jctc.2c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/29/2022]
Abstract
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems. The comparison with the experimental spectra is striking especially in the fingerprint region, as demonstrated by the three benchmark systems discussed: (1S)-Fenchone in the gas phase, (S)-(-)-Propylene oxide in the liquid phase, and (R)-(-)-2-butanol in the liquid phase. The time evolution of APTs and AATs can be adequately described by a linear combination of the tensors of a small set of appropriate reference structures, strongly reducing the computational cost without compromising accuracy. Additionally, AWV allows the partition of the spectral signal in its molecular components without any expensive postprocessing and any localization of the charge density or the wave function.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
14
|
Golub TP, Feßner M, Engelage E, Merten C. Dynamic Stereochemistry of a Biphenyl-Bisprolineamide Model Catalyst and its Imidazolidinone Intermediates. Chemistry 2022; 28:e202201317. [PMID: 35611719 PMCID: PMC9545261 DOI: 10.1002/chem.202201317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/15/2022]
Abstract
In this study, we characterize the dynamic stereochemistry of a biphenyl-2,2'-bis(proline amide) catalyst in chloroform and DMSO as representative weakly and strongly hydrogen bonding solvents. Using vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT) based spectra calculations, we show that the preferred axial stereochemistry of the catalyst is determined by solute-solvent interactions. Explicitly considering solvation with DMSO molecules is found to be essential to correctly predict the conformational preferences of the catalyst. Furthermore, we investigate the stereochemistry of the corresponding enamines and imidazolidinones that are formed upon reaction with isovaleraldehyde. The enamines are found to rapidly convert to endo-imidazolidinones and the thermodynamically favored exo-imidazolidinones are formed only slowly. The present study demonstrates that the stereochemistry of these imidazolidinones can be deduced directly from the VCD spectra analysis without any further detailed analysis of NMR spectra. Hence, we herein exemplify the use of VCD spectroscopy for an in situ characterization of intermediates relevant in asymmetric catalysts.
Collapse
Affiliation(s)
- Tino P. Golub
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Malte Feßner
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Elric Engelage
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Christian Merten
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
15
|
Morgante P, Ludowieg HD, Autschbach J. Comparative Study of Vibrational Raman Optical Activity with Different Time-Dependent Density Functional Approximations: The VROA36 Database. J Phys Chem A 2022; 126:2909-2927. [PMID: 35512708 DOI: 10.1021/acs.jpca.2c00951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new database, VROA36, is introduced to investigate the performance of computational approaches for vibrational Raman optical activity (VROA) calculations. The database is composed of 36 molecules with known experimental VROA spectra. It includes 93 conformers. Normal modes calculated with B3LYP-D3(BJ)/def2-TZVP are used to compute the VROA spectra with four functionals, B3LYP-D3(BJ), ωB97X-D, M11, and optimally tuned LC-PBE, as well as several basis sets. SimROA indices and frequency scaling factors are used to compare calculated spectra with each other and with experimental data. The four functionals perform equally well independently of the basis set and usually achieve good agreement with the experimental data. For molecules in near- or at-resonance conditions, the inclusion of a complex (damped) linear response approach is important to obtain physically meaningful VROA intensities. The use of any of the tested functional approximations with the def2-SVPD Gaussian-type basis set, or a basis of similar flexibility, can be recommended for efficient and reliable theoretical VROA studies.
Collapse
Affiliation(s)
- Pierpaolo Morgante
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Herbert D Ludowieg
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
16
|
Weirich L, Tusha G, Engelage E, Schäfer LV, Merten C. VCD spectroscopy reveals conformational changes of chiral crown ethers upon complexation of potassium and ammonium cations. Phys Chem Chem Phys 2022; 24:11721-11728. [PMID: 35506489 DOI: 10.1039/d2cp01309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two chiral derivatives of 18-crown-6, namely the host molecules 2,3-diphenyl- and 2-phenyl-18c6, serve as model systems to investigate whether VCD spectroscopy can be used to monitor conformational changes occurring upon complexation of guests. Host-guest complexes of both crown ethers were prepared by addition of KNO3. The more bulky 2,3-diphenyl-18c6 is found to undergo major conformational changes upon encapsulation of K+, which are revealed as characteristic changes of the VCD spectral signatures. In contrast, while 2-phenyl-18c6 also incorporates K+ into the macrocycle, strong conformational changes are not occurring and thus spectral changes are negligible. With an octyl ammonium cation as guest molecule, 2,3-diphenyl-18c6 shows the same conformational and spectral changes that were observed for K+-complexes. In addition, the asymmetric NH3-deformation modes are found to gain VCD intensity through an induced VCD process. An analysis of the vibrational spectra enables a differentiation of VCD active and inactive guest modes: There appears to be a correlation between the symmetry of the vibrational mode and the induced VCD intensity. While this finding makes the host-guest complexes interesting systems for future theoretical studies on the origin of induced VCD signatures, the observations described in this study demonstrate that VCD spectroscopy is indeed a suitable technique for the characterization of supramolecular host-guest complexes.
Collapse
Affiliation(s)
- Luisa Weirich
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Gers Tusha
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Theoretische Chemie, Universitätsstraße 150, 44801 Bochum, Germany
| | - Elric Engelage
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Lars V Schäfer
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Theoretische Chemie, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
17
|
Yang Y, Cheramy J, Brehm M, Xu Y. Raman Optical Activity of N-Acetyl-L-Cysteine in water and in methanol: the "clusters-in-a-liquid" model and ab initio molecular dynamics simulations. Chemphyschem 2022; 23:e202200161. [PMID: 35353934 DOI: 10.1002/cphc.202200161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Indexed: 11/06/2022]
Abstract
Raman and Raman Optical Activity (ROA) spectra of N-acetyl-L-cysteine (NALC), a flexible chiral molecule, were measured in water and in methanol to evaluate the solvent effects. Two different solvation approaches, i.e. the DFT based clusters-in-a-liquid solvent model and the ab initio molecular dynamics (AIMD) simulations, were applied to simulate the Raman and ROA spectra. Systematic conformational searches were carried out using a recently developed conformational searching tool, CREST, with the inclusion of polarizable continuum model of water and of methanol. The CREST candidates of NALC and the NALC-solvent complexes were re-optimized and their Raman and ROA simulations were done at the B3LYP-D3BJ/def2-TZVP and the B3LYP-aug-cc-pVDZ//cc-pVTZ levels. Also, AIMD simulations , which includes some anharmonic effects and all intermolecular interactions in solution, were performed. By empirically weighting the computed Raman and ROA spectra of each conformer, good agreements with the experimental data were achieved with both approaches, while AIMD offered some improvements in the carbonyl and in the low wavenumber regions over the static DFT approach. The pros and cons of these two different approaches for accounting the solvent effects on Raman and ROA of this flexible chiral system will also be discussed.
Collapse
Affiliation(s)
| | | | - Martin Brehm
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg, Chemistry, GERMANY
| | - Yunjie Xu
- University of Alberta Faculty of Science, Chemistry Department, 11227 Saskatchewan Drive, T6G 2G2, Edmonton, CANADA
| |
Collapse
|
18
|
Rode JE, Lyczko K, Kosińska K, Matalińska J, Dyniewicz J, Misicka A, Dobrowolski JC, Lipiński PFJ. The solid state VCD of a novel N-acylhydrazone trifluoroacetate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120761. [PMID: 34954483 DOI: 10.1016/j.saa.2021.120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
A novel N-acylhydrazone with pharmaceutical importance was subject of structural and IR/VCD investigations in the solid state. In the crystal structure, dimers of anion-cation pairs are stabilized by H-bonding and ionic interactions. Some less common interaction types, like C=N···C-NH3+ (σ-hole) interactions, hydrazone-aromatic interactions and dispersive contacts of the CF3 groups are also present in the crystal. Satisfactory reproduction of the solid state IR and VCD spectra required that quantum-chemical calculations be done on a tetramer (four cation-anion pairs) cut out from the crystal structure, exhibiting key intermolecular interactions. Ten DFT functionals were assessed as to the agreement between the calculated and experimental spectra. Various approaches to scaling of the calculated frequencies were applied. The best results were yielded with individual (optimized) frequency scaling factors (FSFs) and band half-widths at half maximum-(HWHM) for four separate spectral subregions. The best matching between the experimental and theoretical spectra (according to SimIR, SimVCD and SimVDF indices) was found for the B3PW91 functional, however, a few other functionals follow closely in the ranking. Based on the quantum chemical calculations, spectral assignments have been made.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, PL 03-195 Warsaw, Poland
| | - Krzysztof Lyczko
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, PL 03-195 Warsaw, Poland
| | - Katarzyna Kosińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Joanna Matalińska
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Jolanta Dyniewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Aleksandra Misicka
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland
| | - Jan Cz Dobrowolski
- Department for Medicines Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska Street, PL 00-725 Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego Street, PL 02-106 Warsaw, Poland.
| |
Collapse
|
19
|
Bravin C, Mazzeo G, Abbate S, Licini G, Longhi G, Zonta C. Helicity control of a perfluorinated carbon chain within a chiral supramolecular cage monitored by VCD. Chem Commun (Camb) 2022; 58:2152-2155. [PMID: 35059695 DOI: 10.1039/d1cc06861j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Confinement within supramolecular systems is the leading technology to finely tune guest functional properties. In this communication we report the synthesis of a chiral supramolecular cage able to bias the helicity of a perfluorinated carbon chain hosted within the cage. We monitor the phenomenon of chiral induction by Vibrational Circular Dichroism (VCD) experiments complemented by DFT calculations over the possible conformers.
Collapse
Affiliation(s)
- Carlo Bravin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Sergio Abbate
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, Università di Brescia, Viale Europa 11, 25123 Brescia, BS, Italy.
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, PD, Italy.
| |
Collapse
|
20
|
Palivec V, Johannessen C, Kaminský J, Martinez-Seara H. Use of Raman and Raman optical activity to extract atomistic details of saccharides in aqueous solution. PLoS Comput Biol 2022; 18:e1009678. [PMID: 35051172 PMCID: PMC8806073 DOI: 10.1371/journal.pcbi.1009678] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/01/2022] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Sugars are crucial components in biosystems and industrial applications. In aqueous environments, the natural state of short saccharides or charged glycosaminoglycans is floating and wiggling in solution. Therefore, tools to characterize their structure in a native aqueous environment are crucial but not always available. Here, we show that a combination of Raman/ROA and, on occasions, NMR experiments with Molecular Dynamics (MD) and Quantum Mechanics (QM) is a viable method to gain insights into structural features of sugars in solutions. Combining these methods provides information about accessible ring puckering conformers and their proportions. It also provides information about the conformation of the linkage between the sugar monomers, i.e., glycosidic bonds, allowing for identifying significantly accessible conformers and their relative abundance. For mixtures of sugar moieties, this method enables the deconvolution of the Raman/ROA spectra to find the actual amounts of its molecular constituents, serving as an effective analytical technique. For example, it allows calculating anomeric ratios for reducing sugars and analyzing more complex sugar mixtures to elucidate their real content. Altogether, we show that combining Raman/ROA spectroscopies with simulations is a versatile method applicable to saccharides. It allows for accessing many features with precision comparable to other methods routinely used for this task, making it a viable alternative. Furthermore, we prove that the proposed technique can scale up by studying the complicated raffinose trisaccharide, and therefore, we expect its wide adoption to characterize sugar structural features in solution.
Collapse
Affiliation(s)
- Vladimír Palivec
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Golub T, Kano T, Maruoka K, Merten C. VCD spectroscopy distinguishes the enamine and iminium ion of a 1,1’-binaphthyl azepine. Chem Commun (Camb) 2022; 58:8412-8415. [DOI: 10.1039/d2cc02863h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a VCD spectroscopic characterization of a chiral 1,1’-binaphthyl azepine catalyst and show that the VCD spectra of an in-situ generated enamine and an ex-situ prepared iminium ion are...
Collapse
|
22
|
Sonstrom RE, Neill JL, Mikhonin AV, Doetzer R, Pate BH. Chiral analysis of pantolactone with molecular rotational resonance spectroscopy. Chirality 2021; 34:114-125. [PMID: 34698412 DOI: 10.1002/chir.23379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022]
Abstract
A molecular rotational resonance spectroscopy method for measuring the enantiomeric excess of pantolactone, an intermediate in the synthesis of panthenol and pantothenic acid, is presented. The enantiomers are distinguished via complexation with a small chiral tag molecule, which produces diastereomeric complexes in the pulsed jet expansion used to inject the sample into the spectrometer. These complexes have distinct moments of inertia, so their spectra are resolved by MRR spectroscopy. Quantitative enantiomeric excess (EE) measurements are made by taking the ratio of normalized complex signal levels when a chiral tag sample of high, known EE is used, while the absolute configuration of the sample can be determined from electronic structure calculations of the complex geometries. These measurements can be performed without the need for reference samples with known enantiopurity. Two instruments were used in the analysis. A broadband, chirped-pulse spectrometer is used to perform structural characterization of the complexes. The broadband spectrometer is also used to determine the EE; however, this approach requires relatively long measurement times. A targeted MRR spectrometer is also used to demonstrate EE analysis with approximately 15-min sample-to-sample cycle time. The quantitative accuracy of the method is demonstrated by comparison with chiral gas chromatography and through the measurement of a series of reference samples prepared from mixtures of (R)-pantolactone and (S)-pantolactone samples of known EE.
Collapse
Affiliation(s)
- Reilly E Sonstrom
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
- BrightSpec, Inc., Charlottesville, Virginia, USA
| | | | | | | | - Brooks H Pate
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Jähnigen S, Sebastiani D, Vuilleumier R. The important role of non-covalent interactions for the vibrational circular dichroism of lactic acid in aqueous solution. Phys Chem Chem Phys 2021; 23:17232-17241. [PMID: 34369531 DOI: 10.1039/d1cp03106f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a computational study of vibrational circular dichroism (VCD) in solutions of (S)-lactic acid, relying on ab initio molecular dynamics (AIMD) and full solvation with bulk water. We discuss the effect of the hydrogen bond network on the aggregation behaviour of the acid: while aggregates of the solute represent conditions encountered in a weakly interacting solvent, the presence of water drastically interferes with the clusters - more strongly than originally anticipated. For both scenarios we computed the VCD spectra by means of nuclear velocity perturbation theory (NVPT). The comparison with experimental data allows us to establish a VCD-structure relationship that includes the solvent network around the chiral solute. We suggest that fundamental modes with strong polarisation such as the carbonyl stretching vibration can borrow VCD from the chirally restructured solvent cage, which extends the common explanatory models of VCD generation in aqueous solution.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| | | | | |
Collapse
|
24
|
Polavarapu PL, Santoro E, Covington CL, Johnson JL, Puente AR, Schley ND, Kallingathodi Z, Prakasan PC, Haleema S, Thomas AA, Ibnusaud I. How important are the intermolecular hydrogen bonding interactions in methanol solvent for interpreting the chiroptical properties? SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119094. [PMID: 33142265 DOI: 10.1016/j.saa.2020.119094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Two crispine A analogs and tetrahydrofuro[2,3-b]furan-3,3a(6aH)-diol, endowed with hydroxyl groups that can participate in intramolecular hydrogen bonding, have been synthesized and experimental vibrational circular dichroism (VCD) spectra and optical rotatory dispersion (ORD) data have been measured in CD3OD/CH3OH solvents. The absolute configurations (ACs) of these compounds have been determined using their synthetic schemes, supplemented wherever possible with X-ray diffraction data. The ACs are also analyzed with quantum chemical (QC) calculations of VCD and ORD utilizing implicit solvation as well as explicit solvation models, with the later employing classical molecular dynamics (MD) simulations. It is found that VCD calculations with implicit solvation model are adequate for determining the ACs, despite propensity of studied compounds for intermolecular hydrogen bonding between solute and solvent molecules. This observation is important because time-consuming MD simulations may not be necessary in the type of situations studied here. Additionally, it is found that the QC predicted VCD spectra provided enough diastereomer discrimination for determining the correct AC of studied compounds independently. The same observation did not apply to ORD.
Collapse
Affiliation(s)
| | - Ernesto Santoro
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Cody L Covington
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Austin Peay State University, Clarksville, TN 37044, USA
| | - Jordan L Johnson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrew R Puente
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Zabeera Kallingathodi
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Prasanth C Prakasan
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Simimole Haleema
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Annu Anna Thomas
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Ibrahim Ibnusaud
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Kottayam 686560, India.
| |
Collapse
|
25
|
Petrovic AG, Polavarapu PL, Łopusiński A, Krasowska D, Wieczorek W, Szyrej M, Błaszczyk J, Drabowicz J. Absolute Configuration and Conformation of (-)- R- t-Butylphenylphosphinoamidate: Chiroptical Spectroscopy and X-ray Analysis. J Org Chem 2020; 85:14456-14466. [PMID: 32786637 PMCID: PMC7684576 DOI: 10.1021/acs.joc.0c00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
The
absolute configuration and conformations of (−)-tert-butylphenylphosphinoamidate were determined using three
different chiroptical spectroscopic methods, namely vibrational circular
dichroism (VCD), electronic circular dichroism (ECD), and optical
rotatory dispersion (ORD). In each of the spectroscopic methods used,
experimental data for the (−)-enantiomer of tert-butylphenylphosphinoamidate were measured in the solution phase.
Using the concentration-dependent experimental infrared spectra, the
existence of dimers in the solution was investigated, and the monomer–dimer
equilibrium constant was determined. Concomitant quantum mechanical
predictions of the VCD, ECD, and ORD for monomeric tert-butylphenylphosphinoamidate were carried out using density functional
theory (DFT) calculations using the B3LYP functional and the 6-31G(d),
6-311G(2d,2p) and aug-cc-pVDZ basis sets. Similar predictions for
dimeric tert-butylphenylphosphinoamidate were also
obtained using the B3LYP/6-31G(d) method. A comparison of theoretically
predicted data with the corresponding experimental data led to the
elucidation of the absolute configuration as (−)-(R)-tert-butylphenylphosphinoamidate with one predominant
conformation in the solution. This conclusion was independently supported
by X-ray analysis of the complex with (+)-R-2,2′-dihydroxy-1,1′-binaphthol
((+)-R- BINOL).
Collapse
Affiliation(s)
- Ana G Petrovic
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Andrzej Łopusiński
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Dorota Krasowska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Wanda Wieczorek
- Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland
| | - Małgorzata Szyrej
- Institute of Chemistry, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Jarosław Błaszczyk
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Józef Drabowicz
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.,Institute of Chemistry, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|