1
|
Jeyarajan S, Peter AS, Ranjith S, Sathyan A, Duraisamy S, Kandasamy I, Chidambaram P, Kumarasamy A. Glycine-replaced epinecidin-1 variant bestows better stability and stronger antimicrobial activity against a range of nosocomial pathogenic bacteria. Biotechnol Appl Biochem 2024; 71:1384-1404. [PMID: 39034467 DOI: 10.1002/bab.2637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
Epinecidin-1 (epi-1), an antimicrobial peptide first identified in marine grouper fish, has multifunctional bioactivities. The present study aims to improve its therapeutic potential via structural modifications that could enhance its antimicrobial activity and stability. To achieve it, we replaced glycine and the first histidine in the parent epi-1 with lysine, which resulted in a peptide with a repeating KXXK motif and improved physiochemical properties related to antimicrobial activity. This modified peptide, referred to as glycine-to-lysine replaced-epi-1, also gained stability and a twofold increase in helical propensity. To produce the active peptide, overlap extension PCR was employed to generate the gene of GK-epi-1 via site-directed mutagenesis, which was then cloned into the pET-32a vector and expressed as a recombinant fusion protein in Escherichia coli C43 (DE3) strain. The recombinant protein was purified and digested with enterokinase to release the active peptide fragment, which was then evaluated for antimicrobial activity and stability. The lysine substitution led to an enhancement in broad-spectrum antimicrobial activity against a wide range of nosocomial pathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Jeyarajan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
- Transgeinc Animal Model Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, Michigan, USA
| | - Ansu Susan Peter
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Indira Kandasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
2
|
Khodam Hazrati M, Vácha R. Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2. J Phys Chem B 2024; 128:8469-8476. [PMID: 39194157 PMCID: PMC11382259 DOI: 10.1021/acs.jpcb.4c04338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Despite ongoing research on antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), their precise translocation mechanism remains elusive. This includes Buforin 2 (BF2), a well-known AMP, for which spontaneous translocation across the membrane has been proposed but a high barrier has been calculated. Here, we used computer simulations to investigate the effect of a nonequilibrium situation where the peptides are adsorbed on one side of the lipid bilayer, mimicking experimental conditions. We demonstrated that the asymmetric membrane adsorption of BF2 enhances its translocation across the lipid bilayer by lowering the energy barrier by tens of kJ mol-1. We showed that asymmetric membrane adsorption also reduced the free energy barrier of lipid flip-flop but remained unlikely even at BF2 surface saturation. These results provide insight into the driving forces behind membrane translocation of cell-penetrating peptides in nonequilibrium conditions, mimicking experiments.
Collapse
Affiliation(s)
- Mehrnoosh Khodam Hazrati
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625
00, Czech Republic
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625
00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, Brno 611 37, Czech Republic
| |
Collapse
|
3
|
Bartoš L, Drabinová M, Vácha R. Optimizing properties of translocation-enhancing transmembrane proteins. Biophys J 2024; 123:1240-1252. [PMID: 38615194 PMCID: PMC11140465 DOI: 10.1016/j.bpj.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
Cell membranes act as semi-permeable barriers, often restricting the entry of large or hydrophilic molecules. Nonetheless, certain amphiphilic molecules, such as antimicrobial and cell-penetrating peptides, can cross these barriers. In this study, we demonstrate that specific properties of transmembrane proteins/peptides can enhance membrane permeation of amphiphilic peptides. Using coarse-grained molecular dynamics with free-energy calculations, we identify key translocation-enhancing attributes of transmembrane proteins/peptides: a continuous hydrophilic patch, charged residues preferably in the membrane center, and aromatic hydrophobic residues. By employing both coarse-grained and atomistic simulations, complemented by experimental validation, we show that these properties not only enhance peptide translocation but also speed up lipid flip-flop. The enhanced flip-flop reinforces the idea that proteins such as scramblases and insertases not only share structural features but also operate through identical biophysical mechanisms enhancing the insertion and translocation of amphiphilic molecules. Our insights offer guidelines for the designing of translocation-enhancing proteins/peptides that could be used in medical and biotechnological applications.
Collapse
Affiliation(s)
- Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Drabinová
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
4
|
Bartoš L, Vácha R. Peptide translocation across asymmetric phospholipid membranes. Biophys J 2024; 123:693-702. [PMID: 38356262 PMCID: PMC10995401 DOI: 10.1016/j.bpj.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
The transport of molecules across cell membranes is vital for proper cell function and effective drug delivery. While most cell membranes naturally possess an asymmetric lipid composition, research on membrane transport predominantly uses symmetric lipid membranes. The permeation through the asymmetric membrane is then calculated as a sum of the inverse permeabilities of leaflets from symmetric bilayers. In this study, we examined how two types of amphiphilic molecules translocate across both asymmetric and symmetric membranes. Using computer simulations with both coarse-grained and atomistic force fields, we calculated the free energy profiles for the passage of model amphiphilic peptides and a lipid across various membranes. Our results consistently demonstrate that while the free energy profiles for asymmetric membranes with a small differential stress concur with symmetric ones in the region of lipid headgroups, the profiles differ around the center of the membrane. In this region, the free energy for the asymmetric membrane transitions between the profiles for two symmetric membranes. In addition, we show that peptide permeability through an asymmetric membrane cannot always be predicted from the permeabilities of the symmetric membranes. This indicates that using symmetric membranes falls short in providing an accurate depiction of peptide translocation across asymmetric membranes.
Collapse
Affiliation(s)
- Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Park SC, Lee JK, Kim YM, Lee JR. Effects of structural changes on antibacterial activity and cytotoxicity due to proline substitutions in chimeric peptide HnMc. Biochem Biophys Res Commun 2023; 679:139-144. [PMID: 37696067 DOI: 10.1016/j.bbrc.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023]
Abstract
Owing to the rapidly increasing emergence of multidrug-resistant pathogens, antimicrobial peptides (AMPs) are being explored as next-generation antibiotics. However, AMPs present in nature are highly toxic and exhibit low antibacterial activity. Simple modifications, such as amino acid substitution, can enhance antimicrobial activity and cell selectivity. Herein, we show that HnMc-W, substituted by the Phe1Trp analog of HnMc, a chimeric peptide, resulted in membranolytic antibacterial action and enhanced salt tolerance, whereas HnMc-WP1 with one Ser9Pro substitution resulted in a proline-kink helical structure that increased salt-tolerant antibacterial effects and reduced cytotoxicity. In addition, the HnMc-WP2 peptide, designed with a PXXP motif, had a flexible central hinge in its α-helical structure due to the introduction of two Pro and two Gln (X positions, by deletion of two Gln at positions 16 and 17) residues instead of Ser at position. HnMc-WP2 exhibited excellent antibacterial effects without cytotoxicity in vitro. Moreover, its potent antibacterial activity was demonstrated in a drug-resistant Pseudomonas aeruginosa-infected mouse model in vivo. Our findings provide valuable information for the design of peptides with high antibacterial activity and cell selectivity.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jong-Kook Lee
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Young-Min Kim
- Department of Chemical Engineering, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jung Ro Lee
- LMO Team, National Institute of Ecology (NIE), Seocheon, 33657, Republic of Korea; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
6
|
Tan F, Yan R, Zhao C, Zhao N. Translocation Dynamics of an Active Filament through a Long-Length Scale Channel. J Phys Chem B 2023; 127:8603-8615. [PMID: 37782905 DOI: 10.1021/acs.jpcb.3c04250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Active filament translocation through a confined space is crucial for diverse biological processes. By using Langevin dynamics simulations, we investigate the translocation dynamics of an axially self-propelled chain through a channel. First, results show a suggestive reciprocal scaling of translocation time versus active force. Second, in the case of a long channel, we demonstrate a very intriguing nonmonotonic change of translocation time with increasing channel width. The driving force shows a similar trend, providing a consistent picture to understand the unexpected channel width effect. In particular, in a moderately broad channel, the disordered chain conformation results in a loss of driving force and thus inhibits translocation dynamics. Chain adsorption might occur in a wide channel, which accounts for a facilitated translocation. Lastly, we connect the translocation process to tension propagation (TP). A modified TP picture is proposed to interpret the waiting time distribution. Our work highlights the new phenomenology owing to the crucial interplay of activity and spacial confinement, which drives the translocation dynamics, going beyond the traditional entropic barrier scenario.
Collapse
Affiliation(s)
- Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Ventura CR, Wiedman GR. WITHDRAWN: Photobuforin II, a fluorescent photoswitchable peptide. Biochim Biophys Acta Gen Subj 2023:130468. [PMID: 37783292 DOI: 10.1016/j.bbagen.2023.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, https://doi.org/10.1016/j.bbadva.2023.100106. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Cristina R Ventura
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, USA
| | - Gregory R Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
8
|
Ventura CR, Wiedman GR. Photobuforin II, a fluorescent photoswitchable peptide. BBA ADVANCES 2023; 4:100106. [PMID: 37842183 PMCID: PMC10568295 DOI: 10.1016/j.bbadva.2023.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Antimicrobial peptide buforin II translocates across the cell membrane and binds to DNA. Its sequence is identical to a portion of core histone protein H2A making it a highly charged peptide. Buforin II has a proline residue in the middle of its sequence that creates a helix-hinge-helix motif which has been found to play a key role in its ability to translocate across the cell membrane. To explore the structure-function relationship of this proline residue this study has replaced P11 with a meta-substituted azobenzene amino acid (Z). The resultant peptide, photobuforin II, retained the secondary structure and membrane activity of the naturally occurring peptide while gaining new spectroscopic properties. Photobuforin II can be isomerized from its trans to cis isomer upon irradiation with ultra-violet (UV) light and from its cis to trans isomer upon irradiation with visible (VL). Photobuforin II is also fluorescent with an emission peak at 390 nm. The intrinsic fluorescence of the peptide was used to determine binding to the membrane and to DNA. VL-treated photobuforin II has a 2-fold lower binding constant compared to UV-treated photobuforin and causes 11-fold more membrane leakage in 3:1 POPC:POPG vesicles. Photobuforin II provides insights into the importance of structure function relationships in membrane active peptides while also demonstrating that azobenzene can be used in certain peptide sequences to produce intrinsic fluorescence.
Collapse
Affiliation(s)
- Cristina R. Ventura
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, USA
| | - Gregory R. Wiedman
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, USA
| |
Collapse
|
9
|
Wang Y, Zhou J, Zheng T, Li L, Zhu M. Adsorption Kinetics of Poly(benzyl acrylate) Chains onto Alumina Interface during the Flow-Driven Translocation through Cylindrical Nanochannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13303-13315. [PMID: 37669096 DOI: 10.1021/acs.langmuir.3c01913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this work, the adsorption kinetics of the PBAN/AAO system under flushing condition has been investigated, where PBAN and AAO represent poly(benzyl acrylate) and anodic alumina oxide (AAO, average pore radius R0 ≈ 10 nm) nanochannel, respectively. Our specially designed double-pump flushing system is proved to eliminate the overshoot phenomenon and in situ monitor transmembrane pressure (ΔP) as a function of flushing time (t) and flow rate (Q), which gives the effective pore radius (R), cross-sectional coverage factor (χ = [1 - (R/R0)2]), and characteristic ratio (rc) of the increments of χ during each adsorption/desorption cycle at a given bulk solution concentration (Cbulk). Our findings include: (1) by gradient increasing Cbulk from 10 to 200 mg/L at Q = 10 mL/h, the shortest PBA40 displays a saturation adsorption behavior when Cbulk ≥ 80 mg/L and t ≥ 2000 s, which agrees well with the prediction of blob model, whereas for the longer PBAN chains, the chain length (N) and concentration-dependent adsorption tendency get stronger as N increases from 40 to 620 at t ≥ 2000 s, in particular, R/R0 ∼ N-0.20 is observed at Cbulk = 140 mg/L; (2) by focusing on the platform χ in the saturation adsorption regime (χsat), the longer PBAN displays a stronger adsorption trend with partially reversible feature at Q = 5.0 mL/h, namely, as N increases from 40 to 620, χsat increases from 0.15 to 0.83 at Cbulk = 100 mg/L, where rc changes from 0.25 ± 0.10 to 0.80 ± 0.10 as the adsorption/desorption flushing cycle increases from 1 to 8 at Cbulk = 100 mg/L; (3) by further assuming a solvent nonpenetrating and nondraining adsorption layer, χsat determined in the case of curved surface can be comparable to the physical meaning of adsorption thickness (Δad) in the case of flat-surface adsorption, and the fitting result indicates χsat ∼ Δad ∼ N0.58, falling between Δad ∼ N1/2 and Δad ∼ N1.0 predicted by the mean-field and scaling theories for real multichain adsorption, respectively. Overall, the present work not only clarifies some controversies but also provides unambiguous evidence supporting the existence of tightly adsorbed internal and loosely adsorbed external layers.
Collapse
Affiliation(s)
- Yiren Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianing Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tao Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
11
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
12
|
Kabelka I, Vácha R. Advances in Molecular Understanding of α-Helical Membrane-Active Peptides. Acc Chem Res 2021; 54:2196-2204. [PMID: 33844916 DOI: 10.1021/acs.accounts.1c00047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological membranes separate the interior of cells or cellular compartments from their outer environments. This barrier function of membranes can be disrupted by membrane-active peptides, some of which can spontaneously penetrate through the membranes or open leaky transmembrane pores. However, the origin of their activity/toxicity is not sufficiently understood for the development of more potent peptides. To this day, there are no design rules that would be generally valid, and the role of individual amino acids tends to be sequence-specific.In this Account, we describe recent progress in understanding the design principles that govern the activity of membrane-active peptides. We focus on α-helical amphiphilic peptides and their ability to (1) translocate across phospholipid bilayers, (2) form transmembrane pores, or (3) act synergistically, i.e., to produce a significantly more potent effect in a mixture than the individual components.We refined the description of peptide translocation using computer simulations and demonstrated the effect of selected residues. Our simulations showed the necessity to explicitly include charged residues in the translocation description to correctly sample the membrane perturbations they can cause. Using this description, we calculated the translocation of helical peptides with and without the kink induced by the proline/glycine residue. The presence of the kink had no effect on the translocation barrier, but it decreased the peptide affinity to the membrane and reduced the peptide stability inside the membrane. Interestingly, the effects were mainly caused by the peptide's increased polarity, not the higher flexibility of the kink.Flexibility plays a crucial role in pore formation and affects distinct pore structures in different ways. The presence of a kink destabilizes barrel-stave pores, because the kink prevents the tight packing of peptides in the bundle, which is characteristic of the barrel-stave structure. In contrast, the kink facilitates the formation of toroidal pores, where the peptides are only loosely arranged and do not need to closely assemble. The exact position of the kink in the sequence further determines the preferred arrangement of peptides in the pore, i.e., an hourglass or U-shaped structure. In addition, we demonstrated that two self-associated (via termini) helical peptides could mimic the behavior of peptides with a helix-kink-helix motif.Finally, we review the recent findings on the peptide synergism of the archetypal mixture of Magainin 2 and PGLa peptides. We focused on a bacterial plasma membrane mimic that contains negatively charged lipids and lipids with negative intrinsic curvature. We showed that the synergistic action of peptides was highly dependent on the lipid composition. When the lipid composition and peptide/lipid ratios were changed, the systems exhibited more complex behavior than just the previously reported pore formation. We observed membrane adhesion, fusion, and even the formation of the sponge phase in this regime. Furthermore, enhanced adhesion/partitioning to the membrane was reported to be caused by lipid-induced peptide aggregation.In conclusion, the provided molecular insight into the complex behavior of membrane-active peptides provides clues for the design and modification of antimicrobial peptides or toxins.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC − Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC − Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University Kamenice 5, 625 00 Brno, Czech Republic
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
13
|
Bartoš L, Kabelka I, Vácha R. Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins. Biophys J 2021; 120:2296-2305. [PMID: 33864790 PMCID: PMC8390799 DOI: 10.1016/j.bpj.2021.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/11/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
Cell membranes are phospholipid bilayers with a large number of embedded transmembrane proteins. Some of these proteins, such as scramblases, have properties that facilitate lipid flip-flop from one membrane leaflet to another. Scramblases and similar transmembrane proteins could also affect the translocation of other amphiphilic molecules, including cell-penetrating or antimicrobial peptides. We studied the effect of transmembrane proteins on the translocation of amphiphilic peptides through the membrane. Using two very different models, we consistently demonstrate that transmembrane proteins with a hydrophilic patch enhance the translocation of amphiphilic peptides by stabilizing the peptide in the membrane. Moreover, there is an optimum amphiphilicity because the peptide could become overstabilized in the transmembrane state, in which the peptide-protein dissociation is hampered, limiting the peptide translocation. The presence of scramblases and other proteins with similar properties could be exploited for more efficient transport into cells. The described principles could also be utilized in the design of a drug-delivery system by the addition of a translocation-enhancing peptide that would integrate into the membrane.
Collapse
Affiliation(s)
- Ladislav Bartoš
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic
| | - Ivo Kabelka
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology (CEITEC) Masaryk University, Kamenice, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská, Brno, Czech Republic.
| |
Collapse
|
14
|
Kabelka I, Brožek R, Vácha R. Selecting Collective Variables and Free-Energy Methods for Peptide Translocation across Membranes. J Chem Inf Model 2021; 61:819-830. [PMID: 33566605 DOI: 10.1021/acs.jcim.0c01312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective permeability of cellular membranes is a crucial property for controlled transport into and out of cells. Molecules that can bypass the cellular machinery and spontaneously translocate across membranes could be used as therapeutics or drug carriers. Peptides are a prominent class of such molecules, which include natural and man-developed antimicrobial and cell-penetrating peptides. However, the necessary peptide properties for translocation remain elusive. Computer simulations could uncover these properties once we have a good collective variable (CV) that accurately describes the translocation process. Here, we developed a new CV, which includes a description of peptide insertion, local membrane deformation, and peptide internal degrees of freedom related to its charged groups. By comparison of CVs, we demonstrated that all these components are necessary for an accurate description of peptide translocation. Moreover, the advantages and disadvantages of three common methods for free-energy calculations with our CV were evaluated using the MARTINI coarse-grained model: umbrella sampling, umbrella sampling with replica exchange, and metadynamics. The developed CV leads to the reliable and effective calculation of the free energy of peptide translocation, and thus, it could be useful in the design of spontaneously translocating peptides.
Collapse
Affiliation(s)
- Ivo Kabelka
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radim Brožek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
15
|
Marrink SJ, Levental I. Computational and Experimental Advances in Biomembranes: Resolving Their Complexity. J Phys Chem B 2020; 124:9975-9976. [PMID: 33176427 DOI: 10.1021/acs.jpcb.0c09401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ilya Levental
- University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|