1
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Zhou L, Feng RR, Zhang W, Gai F. Triple-Bond Vibrations: Emerging Applications in Energy and Biological Sciences. J Phys Chem Lett 2024; 15:187-200. [PMID: 38156972 DOI: 10.1021/acs.jpclett.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Triple bonds, such as that formed between two carbon atoms (i.e., C≡C) or that formed between one carbon atom and one nitrogen atom (i.e., C≡N), afford unique chemical bonding and hence vibrational characteristics. As such, they are not only frequently used to construct molecules with tailored chemical and/or physical properties but also employed as vibrational probes to provide site-specific chemical and/or physical information at the molecular level. Herein, we offer our perspective on the emerging applications of various triple-bond vibrations in energy and biological sciences with a focus on C≡C and C≡N triple bonds.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Mohamed A, Edington SC, Secor M, Breton JR, Hammes-Schiffer S, Johnson MA. Spectroscopic Characterization of the Divalent Metal Docking Motif to Isolated Cyanobenzoate: Direct Observation of Tridentate Binding to ortho-Cyanobenzoate and Implications for the CN Response. J Phys Chem A 2023; 127:1413-1421. [PMID: 36748882 DOI: 10.1021/acs.jpca.2c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cryogenic ion vibrational spectra of D2-tagged cyanobenzoate (CBA) derivatives are obtained and analyzed to characterize the intrinsic spectroscopic responses of the -CO2- headgroup to its location on the ring in both the isolated anions and the cationic complexes with divalent metal ions, M2+ (M = Mg, Ca, Sr). The benzonitrile functionality establishes the different ring isomers (para, meta, ortho) according to the location of the carboxylate and provides an additional reporter on the molecular response to the proximal charge center. The aromatic carboxylates display shifts slightly smaller than those observed for a related aliphatic system upon metal ion complexation. Although the CBA anions display very similar band patterns for all three ring positions, upon complexation with metal ions, the ortho isomer yields dramatically different spectral responses in both the -CO2- moiety and the CN group. This behavior is traced to the emergence of a tridentate binding motif unique to the ortho isomer in which the metal ions bind to both the oxygen atoms of the carboxylate group and the N atom of the cyano group. In that configuration, the -CO2- moiety is oriented perpendicular to the phenyl ring, and the CN stretching fundamental is both strong and red-shifted relative to its behavior in the isolated neutral. The behaviors of the metal-bound ortho complexes occur in contrast to the usual blue shifts associated with "Lewis" type binding of metal ions end-on to -CN. The origins of these spectroscopic features are analyzed with the aid of electronic structure calculations, which also explore differences expected for complexation of monovalent cations to the ortho carboxylate. The resulting insights have implications for understanding the balance between electrostatic and steric interactions at metal binding sites in chemical and biological systems.
Collapse
Affiliation(s)
- Ahmed Mohamed
- Sterling Chemistry Laboratory Department of Chemistry, Yale University, New Haven, Connecticut 06512, United States
| | - Sean C Edington
- Sterling Chemistry Laboratory Department of Chemistry, Yale University, New Haven, Connecticut 06512, United States
| | - Maxim Secor
- Sterling Chemistry Laboratory Department of Chemistry, Yale University, New Haven, Connecticut 06512, United States
| | - James R Breton
- Sterling Chemistry Laboratory Department of Chemistry, Yale University, New Haven, Connecticut 06512, United States
| | - Sharon Hammes-Schiffer
- Sterling Chemistry Laboratory Department of Chemistry, Yale University, New Haven, Connecticut 06512, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory Department of Chemistry, Yale University, New Haven, Connecticut 06512, United States
| |
Collapse
|
4
|
Chen C, Huang C, Liu J, Tao J, Chen Y, Deng K, Xu Y, Lin B, Zhao P. Hofmeister Effect-Based T1-T2 Dual-Mode MRI and Enhanced Synergistic Therapy of Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49568-49581. [PMID: 36317744 DOI: 10.1021/acsami.2c15295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The imaging resolution of magnetic resonance imaging (MRI) is influenced by many factors. The development of more effective MRI contrast agents (CAs) is significant for early tumor detection and radical treatment, albeit challenging. In this work, the Hofmeister effect of Fe2O3 nanoparticles within the tumor microenvironment was confirmed for the first time. Based on this discovery, we designed a nanocomposite (FePN) by loading Fe2O3 nanoparticles on black phosphorus nanosheets. After reacting with glutathione, the FePN will undergo two stages in the tumor microenvironment, resulting in the robust enhancement of r1 and r2 based on the Hofmeister effect in the commonly used magnetic field (3.0 T). The glutathione-activated MRI signal of FePN was higher than most of the activatable MRI CAs, enabling a more robust visualization of tumors. Furthermore, benefiting from the long circulation time of FePN in the blood and retention time in tumors, the synergistic therapy of FePN exhibited an outstanding inhibition toward tumors. The FePN with good biosafety and biocompatibility will not only pave a new way for designing a common magnetic field-tailored T1-T2 dual-mode MRI CA but also offer a novel pattern for the accurate clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
- Department of Ultrasound, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Kan Deng
- Philips Healthcare, 510000 Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation and School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| |
Collapse
|
5
|
Weaver JB, Kozuch J, Kirsh JM, Boxer SG. Nitrile Infrared Intensities Characterize Electric Fields and Hydrogen Bonding in Protic, Aprotic, and Protein Environments. J Am Chem Soc 2022; 144:7562-7567. [PMID: 35467853 PMCID: PMC10082610 DOI: 10.1021/jacs.2c00675] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitriles are widely used vibrational probes; however, the interpretation of their IR frequencies is complicated by hydrogen bonding (H-bonding) in protic environments. We report a new vibrational Stark effect (VSE) that correlates the electric field projected on the -C≡N bond to the transition dipole moment and, by extension, the nitrile peak area or integrated intensity. This linear VSE applies to both H-bonding and non-H-bonding interactions. It can therefore be generally applied to determine electric fields in all environments. Additionally, it allows for semiempirical extraction of the H-bonding contribution to the blueshift of the nitrile frequency. Nitriles were incorporated at H-bonding and non-H-bonding protein sites using amber suppression, and each nitrile variant was structurally characterized at high resolution. We exploited the combined information available from variations in frequency and integrated intensity and demonstrate that nitriles are a generally useful probe for electric fields.
Collapse
Affiliation(s)
- Jared Bryce Weaver
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Jacek Kozuch
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jacob M Kirsh
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States
| |
Collapse
|
6
|
Yılmaz Topuzlu E, Okur HI, Ulgut B, Dag Ö. Role of Water in the Lyotropic Liquid Crystalline Mesophase of Lithium Salts and Non-ionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14443-14453. [PMID: 34856801 DOI: 10.1021/acs.langmuir.1c02411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lyotropic liquid crystalline (LLC) mesophase forms upon evaporation of water from aqueous solutions of LiX salts (X is Cl-, Br-, NO3-, or SCN-) and a surfactant [C12H25(OCH2CH2)10OH, abbreviated as C12E10]. The LiX/C12E10/H2O aqueous solutions have been monitored (during evaporation of their excess water to obtain stable LLC mesophases) by gravimetric, spectroscopic, and conductivity measurements to elucidate the role of water in these mesophases. The water/salt molar ratio in stable mesophases changes from 1.5 to 8.0, depending on the counteranion of the salt and the ambient humidity of the laboratory. The LiX/C12E10/H2O LLC mesophases lose water at lower humidity levels and absorb water at higher humidity levels. The LiCl-containing mesophase holds as few as four structural water molecules per LiCl, whereas the LiNO3 mesophase holds 1.5 waters per salt (least among those assessed). This ratio strongly depends on the atmospheric humidity level; the water/LiX mole ratio increases by 0.08 ± 0.01 H2O in the LLC mesophases per percent humidity unit. Surprisingly, the LLC mesophases are stable (no salt leaching) in broad humidity (10-85%) and salt/surfactant mole ratio (2-10 LiX/C12E10) ranges. Attenuated total reflectance Fourier transform infrared spectroscopic data show that the water molecules in the mesophase interact with salt species more strongly in the LiCl mesophase and more weakly in the case of the nitrate ion, which is evident by the shift of the O-H stretching band of water. The O-H stretching peak position in the mesophases decreases in the order νLiCl > νLiBr > νLiSCN > νLiNO3 and accords well with the H2O/LiX mole ratio. The conductivity of the LLC mesophase also responds to the amount of water as well as the nature of the counteranion (X-). The conductivity decreases in the order σLiCl > σLiBr > σLiNO3 > σLiSCN at low salt mole ratios and in the order σLiBr > σLiCl > σLiNO3 > σLiSCN at higher ratios due to structural changes in the mesophase.
Collapse
Affiliation(s)
| | - Halil I Okur
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Burak Ulgut
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Patel AY, Jonnalagadda KS, Paradis N, Vaden TD, Wu C, Caputo GA. Effects of Ionic Liquids on Metalloproteins. Molecules 2021; 26:514. [PMID: 33478102 PMCID: PMC7835893 DOI: 10.3390/molecules26020514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/28/2023] Open
Abstract
In the past decade, innovative protein therapies and bio-similar industries have grown rapidly. Additionally, ionic liquids (ILs) have been an area of great interest and rapid development in industrial processes over a similar timeline. Therefore, there is a pressing need to understand the structure and function of proteins in novel environments with ILs. Understanding the short-term and long-term stability of protein molecules in IL formulations will be key to using ILs for protein technologies. Similarly, ILs have been investigated as part of therapeutic delivery systems and implicated in numerous studies in which ILs impact the activity and/or stability of protein molecules. Notably, many of the proteins used in industrial applications are involved in redox chemistry, and thus often contain metal ions or metal-associated cofactors. In this review article, we focus on the current understanding of protein structure-function relationship in the presence of ILs, specifically focusing on the effect of ILs on metal containing proteins.
Collapse
Affiliation(s)
- Aashka Y. Patel
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
| | | | - Nicholas Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
| | - Timothy D. Vaden
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|