1
|
Nath S, Tulsiyan KD, Mohapatra B, Puthukkudi A, Alone PV, Biswal HS, Biswal BP. Covalent Organic Frameworks as Nano-Reservoir for Room Temperature RNA Storage. Chemistry 2024; 30:e202304079. [PMID: 38441909 DOI: 10.1002/chem.202304079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 03/23/2024]
Abstract
The emerging role of Ribonucleic acids (RNAs) as therapeutics is alluring. However, RNAs are extremely labile under ambient conditions and typically need to be stored in cryogenic conditions (-20 °C to -80 °C). Hence, storage, stabilization, and transportation of RNA under ambient conditions have been an arduous task and remain an unsolved problem. In this work, a guanidinium-based ionic covalent organic framework (COF), TTGCl with nanotubular morphology, was synthesized and used as nano-reservoirs for room-temperature storage of RNA. To understand the role of the nanotubular morphology and chemical nature of TTGCl in stabilizing the RNA structure and for comparison purposes, a neutral COF, TMT-TT, is synthesized and studied. Further, density functional theory (DFT) studies confirmed non-covalent interaction between the COFs and the RNA nucleobases, facilitating reversible storage of RNA. RNA loaded in COFs was found to be resistant to enzymatic degradation when treated with RNase. Gel electrophoresis and sequencing confirmed the structural integrity of the recovered RNAs and their further processibility.
Collapse
Affiliation(s)
- Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Binayak Mohapatra
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
| | - Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Pankaj V Alone
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, INDIA
| |
Collapse
|
2
|
Gándara Z, Rubio N, Castillo RR. Delivery of Therapeutic Biopolymers Employing Silica-Based Nanosystems. Pharmaceutics 2023; 15:pharmaceutics15020351. [PMID: 36839672 PMCID: PMC9963032 DOI: 10.3390/pharmaceutics15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The use of nanoparticles is crucial for the development of a new generation of nanodevices for clinical applications. Silica-based nanoparticles can be tailored with a wide range of functional biopolymers with unique physicochemical properties thus providing several advantages: (1) limitation of interparticle interaction, (2) preservation of cargo and particle integrity, (3) reduction of immune response, (4) additional therapeutic effects and (5) cell targeting. Therefore, the engineering of advanced functional coatings is of utmost importance to enhance the biocompatibility of existing biomaterials. Herein we will focus on the most recent advances reported on the delivery and therapeutic use of silica-based nanoparticles containing biopolymers (proteins, nucleotides, and polysaccharides) with proven biological effects.
Collapse
Affiliation(s)
- Zoila Gándara
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Noelia Rubio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| | - Rafael R. Castillo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
- Correspondence: (Z.G.); (N.R.); (R.R.C.)
| |
Collapse
|
3
|
Dean KR, Novak B, Moradipour M, Tong X, Moldovan D, Knutson BL, Rankin SE, Lynn BC. Complexation of Lignin Dimers with β-Cyclodextrin and Binding Stability Analysis by ESI-MS, Isothermal Titration Calorimetry, and Molecular Dynamics Simulations. J Phys Chem B 2022; 126:1655-1667. [PMID: 35175769 DOI: 10.1021/acs.jpcb.1c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignin derived from lignocellulosic biomass is the largest source of renewable bioaromatics present on earth and requires environmentally sustainable separation strategies to selectively obtain high-value degradation products. Applications of supramolecular interactions have the potential to isolate lignin compounds from biomass degradation fractions by the formation of variable inclusion complexes with cyclodextrins (CDs). CDs are commonly used as selective adsorbents for many applications and can capture guest molecules in their internal hydrophobic cavity. The strength of supramolecular interactions between CDs and lignin model compounds that represent potential lignocellulosic biomass degradation products can be characterized by assessing the thermodynamics of binding stability. Consequently, the inclusion interactions of β-CD and lignin model compounds G-(β-O-4')-G, G-(β-O-4')-truncG (guaiacylglycerol-β-guaiacyl ether), and G-(β-β')-G (pinoresinol) were investigated empirically by electrospray ionization mass spectrometry and isothermal titration calorimetry, complemented by molecular dynamics (MD) simulations. Empirical results indicate that there are substantial differences in binding stability dependent on the linkage type. The lignin model β-β' dimer showed more potential bound states including 1:1, 2:1, and 1:2 (guest:host) complexation and, based on binding stability determinations, was consistently the most energetically favorable guest. Empirical results are supported by MD simulations that reveal that the capture of G-(β-β')-G by β-CD is promising with a 66% probability of being bound for G-(β-O-4')-truncG compared to 88% for G-(β-β')-G (unbiased distance trajectory and explicit counting of bound states). These outcomes indicate CDs as a promising material to assist in separations of lignin oligomers from heterogeneous mixtures for the development of environmentally sustainable isolations of lignin compounds from biomass fractions.
Collapse
Affiliation(s)
- Kimberly R Dean
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Brian Novak
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mahsa Moradipour
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Xinjie Tong
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dorel Moldovan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Barbara L Knutson
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Stephen E Rankin
- Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
4
|
Zhou S, Nadeau EA, Khan MA, Webb BA, Rankin SE, Knutson BL. Relating Mobility of dsRNA in Nanoporous Silica Particles to Loading and Release Behavior. ACS APPLIED BIO MATERIALS 2021; 4:8267-8276. [DOI: 10.1021/acsabm.1c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shanshan Zhou
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily A. Nadeau
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - M. Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bruce A. Webb
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Stephen E. Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Barbara L. Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
5
|
Surface functionalization of mesoporous silica with maltodextrin for efficient adsorption of selective heavy metal ions from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. SMALL METHODS 2021; 5:e2100402. [PMID: 34514087 PMCID: PMC8420172 DOI: 10.1002/smtd.202100402] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Indexed: 05/07/2023]
Abstract
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Pawel Nakielski
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Anna Liguori
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
| | - Francesca Petronella
- Institute of Crystallography CNR‐ICNational Research Council of ItalyVia Salaria Km 29.300Monterotondo – Rome00015Italy
| | - Dario Presutti
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Qiusheng Wang
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Luciano De Sio
- Department of Medico‐Surgical Sciences and BiotechnologiesResearch Center for BiophotonicsSapienza University of RomeCorso della Repubblica 79Latina04100Italy
- CNR‐Lab. LicrylInstitute NANOTECArcavacata di Rende87036Italy
| | - Chiara Gualandi
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials TechnologyCIRI‐MAMUniversity of BolognaViale Risorgimento 2Bologna40136Italy
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Filippo Pierini
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| |
Collapse
|
7
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|