1
|
Yang H, Wu X, Ge W, Wang S, Xu Y, Liu H, Liu J, Zhu D. Water/oil interfacial behaviors of soy hull polysaccharide revealed by molecular dynamics simulation and particle tracking microrheology. Int J Biol Macromol 2024; 277:134378. [PMID: 39097048 DOI: 10.1016/j.ijbiomac.2024.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The soy hull polysaccharide (SHP) exhibits excellent interfacial activity and holds potential as an emulsifier for emulsions. To reveal the behavior of SHP at the water/oil (W/O) interface in situ, molecular dynamics (MD) simulations and particle tracking microrheology were used in this study. The results of MD reveal that SHP molecular spontaneously move toward the interface and rhamnogalacturonan-I initiates this movement, while its galacturonic acids on it act as anchors to immobilize the SHP molecules at the W/O interface. Microrheology results suggest that SHP forms microgels at the W/O interface, with the lattices of the microgels continually undergoing dynamic changes. At low concentrations of SHP and short interfacial formation time, the network of the microgels is weak and dominated by viscous properties. However, when SHP reaches 0.75 % and the interfacial formation time is about 60 min, the microgels show perfect elasticity, which is beneficial for stabilizing emulsions.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xueli Wu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Wenfei Ge
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd., Yucheng 251200, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
2
|
Xu X, Li Z, Li H, Li Y, Zeng Y, Liu S. Improved-quality graphene films via the synergism of large nanosheet aligning and nanotube bridging for flexible supercapacitors. NANOTECHNOLOGY 2024; 35:455202. [PMID: 39053495 DOI: 10.1088/1361-6528/ad6774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Scalable production of reduced graphene oxide (rGO) films with high mechanical-electrical properties is desirable as these films are candidates for wearable electronics devices and energy storage applications. Removing structural incompleteness such as wrinkles or voids in the graphene films, which are generated from the assembly process, would greatly optimize their mechanical properties. However, the densely stacked graphene sheets in the films degrade their ionic kinetics and thus limit their development. Here, a horizontal-longitudinal-structure modulating strategy is demonstrated to produce enhanced mechanical, conductive, and capacitive graphene films. Typically, two-dimensional large graphene sheets (LGS) induce regular stacking of graphene oxide (GO) during the assembly process to reduce wrinkles, while one-dimensional single-walled carbon nanotubes (SWCNT) bridge with graphene sheets to strengthen the multidirectional intercalation and reduce GO layer restacking. The simultaneous incorporation of LGS and SWCNT synergistically creates a fine microstructure by improving the alignment of graphene sheets, increasing continuous conductive pathways to facilitate electron transport, and enlarging interlayer spacing to promote electrolyte ion diffusion. As a result, the obtained graphene films are flat and exhibit signally reinforced mechanical properties, electrical conductivity (38727 S m-1), as well as specific capacitance (232 F g-1) as supercapacitor electrodes compared to those of original rGO films. Moreover, owing to the comprehensive improved properties, a flexible gel supercapacitor assembled by the graphene film-based electrodes shows high energy density, good flexibility, and excellent cycling stability (93.8% capacitance retention after 10 000 cycles). This work provides a general strategy to manufacture robust graphene structural materials for energy storage applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Xuan Xu
- Research Center of Electrochemical Energy Storage Technologies, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Zhenhu Li
- Research Center of Electrochemical Energy Storage Technologies, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Haoxiang Li
- Research Center of Electrochemical Energy Storage Technologies, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Yongsu Li
- Research Center of Electrochemical Energy Storage Technologies, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Yu Zeng
- Research Center of Electrochemical Energy Storage Technologies, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| | - Shuangyi Liu
- Research Center of Electrochemical Energy Storage Technologies, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, People's Republic of China
| |
Collapse
|
3
|
Li L, Xia M, Yang L, He Y, Liu H, Xie M, Yu M. The decreased interface tension increased the transmembrane transport of soy hull polysaccharide-derived SCFAs in the Caco-2 cells. Int J Biol Macromol 2024; 266:131261. [PMID: 38556231 DOI: 10.1016/j.ijbiomac.2024.131261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Polysaccharides impact intestinal fermentation and regulate interfacial properties which affect absorption and transportation. Short-chain fatty acids (SCFAs), the main metabolites of soy hull polysaccharide lysate, are readily absorbed by the body and perform various physiological functions. We analysed the interfacial properties and transport of soy hull polysaccharide-derived SCFAs in the Caco-2 cell model to clarify the transmembrane transport mechanism. The results showed that the interfacial properties of the co-culture system were influenced by both transit time and concentration of SCFAs, the uptake and transit rates of SCFAs at 1-3 h increased significantly with time (P < 0.05). With increasing transit time and concentration, the transit rates of SCFAs on the apical side (AP) → basolateral side (BL) and BL → AP sides increased and then stabilised, the transit rate of the AP → BL side was higher than that of the BL → AP side. Proteomic analysis showed that soy hull polysaccharide-derived SCFAs resulted in the differential expression of 285 upregulated and 501 downregulated after translocation across Caco-2 cells. The differentially expressed proteins were mainly enriched in ribosomes, oxidative phosphorylation, nuclear transport, and SNARE vesicular transport. This study lays the theoretical foundation for understanding the structure-activity relationship of soy hull polysaccharides in the intestine.
Collapse
Affiliation(s)
- Li Li
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Mingjie Xia
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Lina Yang
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Yutang He
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Engineering, Bohai University. Jinzhou, Liaoning 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| | - Mengxi Xie
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Miao Yu
- Food and Processing Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| |
Collapse
|
4
|
Jiang X, Zhang Y, Zhang F, Tian J, Zhang L, Zhao X, Cui F. Fungi-enabled pore channel regulation and defect engineering of a novel micro-reactor for treating complex effluents. Phys Chem Chem Phys 2023; 25:8564-8573. [PMID: 36883830 DOI: 10.1039/d2cp05608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Defect engineering has become a significant research area in recent years; however, little has been reported on the biological method for modulating the intrinsic carbon defects of the biochar framework. Herein, a fungi-enabled method for the fabrication of porous carbon/Fe3O4/Ag (PC/Fe3O4/Ag) composites was developed, and the mechanism underlying the hierarchical structure is elucidated for the first time. By regulating the cultivation process of fungi on water hyacinth biomass, a well-developed interconnected structure and carbon defects acting as potential catalytic active sites were formed. This new material with antibacterial, adsorption and photodegradation properties could be an excellent choice for treating the mixed dyestuff effluents with oils and bacteria, also guiding pore channel regulation and defect engineering in materials science. Numerical simulations were carried out to demonstrate the remarkable catalytic activity.
Collapse
Affiliation(s)
- Xiaoying Jiang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Feiyang Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jiashuo Tian
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Liuping Zhang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Xinrui Zhao
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Fengling Cui
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
|
6
|
Alberto Arenas-Blanco B, Muñoz-Rugeles L, Cabanzo-Hernández R, Mejía-Ospino E. Molecular Dynamics study of the effect on the interfacial activity of Alkylamine-Modified graphene oxide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Shan Y, Yu C, Zhang M, Wei Q, An J, Lv H, Ni L, Qiu J. Passivating the pH-Responsive Sites to Configure a Widely pH-Stable Emulsifier for High-Efficiency Benzyl Alcohol Oxidation. CHEMSUSCHEM 2022; 15:e202102473. [PMID: 35146937 DOI: 10.1002/cssc.202102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Widely pH-stable emulsions configured by solid emulsifiers with high chemical stabilities and anti-corrosion properties under strong acid or alkaline conditions are highly sought after for practical and wide application of Pickering interfacial catalysis. Herein, a unique strategy was reported for synthesis of a widely pH-stable and novel emulsifier by passivating the pH-responsive sites on graphene oxide nanoribbon (GONR) surface using ionic liquid (IL). The suitable wettability of GONR-IL was derived from the positive binding energy between IL and water, which ensured the stability of the emulsion in a wide pH range. Benefiting from the passivated surface chemistry of GONR, the emulsion microreactor stabilized by GONR-IL exhibited a remarkable stability over a wide range of pH values. A GONR-IL-supported Pd catalyst stabilized at the toluene-water interface achieved an excellent emulsion catalytic activity for benzyl alcohol oxidation (conversion of 92 %), which was exceedingly higher than that of Pd/GONR (<1 %), Pd/CNTs-IL (51 %), or Pd/GO-IL (8 %).
Collapse
Affiliation(s)
- Yuanyuan Shan
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Mengdi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Qianbing Wei
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Jialong An
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Huihui Lv
- Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Lin Ni
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, P.R. China
| |
Collapse
|
8
|
David R, Kumar R. Reactive events at the graphene oxide-water interface. Chem Commun (Camb) 2021; 57:11697-11700. [PMID: 34676846 DOI: 10.1039/d1cc04589j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide exhibits interesting reactive events at its interface with water, with water as an active participant. The reactive events are influenced by the level of oxidation of the graphene oxide sheet. The fully oxidized sheet tends to make the interfacial water media acidic leaving the sheet negatively charged, whereas the reduced sheet can form comparatively long lived carbocations as well as split water forming two alcohol groups on the sheet.
Collapse
Affiliation(s)
- Rolf David
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA. .,PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
9
|
Gu S, Chen K, Jin Y, Yang X. Molecular simulation of adsorption thermodynamics and dynamics behavior of GOs at air-water interface. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1967347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shuyin Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Kai Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Yezhi Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Xiaoning Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Affiliation(s)
- Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60660, United States
| |
Collapse
|