1
|
Yamasaki M, Saso W, Yamamoto T, Sato M, Takagi H, Hasegawa T, Kozakura Y, Yokoi H, Ohashi H, Tsuchimoto K, Hashimoto R, Fukushi S, Uda A, Muramatsu M, Takayama K, Maeda K, Takahashi Y, Nagase T, Watashi K. Anti-SARS-CoV-2 gapmer antisense oligonucleotides targeting the main protease region of viral RNA. Antiviral Res 2024; 230:105992. [PMID: 39181215 DOI: 10.1016/j.antiviral.2024.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Given the worldwide risk for the outbreak of emerging/re-emerging respiratory viruses, establishment of new antiviral strategies is greatly demanded. In this study, we present a scheme to identify gapmer antisense oligonucleotides (ASOs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA that efficiently inhibit viral replication. We synthesized approximately 300 gapmer ASOs designed to target various SARS-CoV-2 RNA regions and evaluated their activity in cell-based assays. Through a multistep screening in cell culture systems, we identified that ASO#41, targeting the coding region for viral main protease, reduced SARS-CoV-2 RNA levels in infected cells and inhibited virus-induced cytopathic effects. Antiviral effect of ASO#41 was also observed in iPS cell-derived human lung organoids. ASO#41 depleted intracellular viral RNAs during genome replication in an endogenous RNaseH-dependent manner. ASO#41 showed a wide range of antiviral activity against SARS-CoV-2 variants of concern including Alpha, Delta, and Omicron. Intranasal administration to mice exhibited intracellular accumulation of ASO#41 in the lung and significantly reduced the viral infectious titer, with milder body weight loss due to SARS-CoV-2 infection. Further chemical modification with phosphoryl guanidine-containing backbone linkages provided an elevation of anti-SARS-CoV-2 activity, with 23.4 nM of 50% antiviral inhibitory concentration, one of the strongest anti-SARS-CoV-2 ASOs reported so far. Our study presents an approach to identify active ASOs against SARS-CoV-2, which is potentially useful for establishing an antiviral strategy by targeting genome RNA of respiratory viruses.
Collapse
Affiliation(s)
- Masako Yamasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takuya Yamamoto
- Infectious Diseases Unit, Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Masayoshi Sato
- Infectious Diseases Unit, Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Hiroko Takagi
- Infectious Diseases Unit, Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Tetsuya Hasegawa
- Department of Medicinal Chemistry, Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Yuji Kozakura
- Department of Drug Discovery Strategy, Office of Bioinformatics, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Hiroyuki Yokoi
- Department of Drug Metabolism and Pharmacokinetics, Preclinical Research, Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kana Tsuchimoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Foundation for Biomedical Research and Innovation at Kobe, Institute of Biomedical Research and Innovation, Kobe, 650-0047, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Tsuyoshi Nagase
- Department of Medicinal Chemistry, Tokushima Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda, 278-8510, Japan; MIRAI, JST, Tokyo, 102-0076, Japan.
| |
Collapse
|
2
|
Iwamoto N, Liu Y, Frank-Kamenetsky M, Maguire A, Tseng WC, Taborn K, Kothari N, Akhtar A, Bowman K, Shelke JD, Lamattina A, Hu XS, Jang HG, Kandasamy P, Liu F, Longo K, Looby R, Meena, Metterville J, Pan Q, Purcell-Estabrook E, Shimizu M, Prakasha PS, Standley S, Upadhyay H, Yang H, Yin Y, Zhao A, Francis C, Byrne M, Dale E, Verdine GL, Vargeese C. Preclinical evaluation of stereopure antisense oligonucleotides for allele-selective lowering of mutant HTT. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102246. [PMID: 39027419 PMCID: PMC11255113 DOI: 10.1016/j.omtn.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ali Akhtar
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | - Fangjun Liu
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Ken Longo
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Meena
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Qianli Pan
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Hailin Yang
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Yuan Yin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | - Mike Byrne
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Elena Dale
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Gregory L. Verdine
- Department of Stem Cell and Regenerative Biology, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
3
|
Prokhorova DV, Kupryushkin MS, Zhukov SA, Zharkov TD, Dovydenko IS, Yakovleva KI, Pereverzev IM, Matveeva AM, Pyshnyi DV, Stepanov GA. Effect of the Phosphoryl Guanidine Modification in Chimeric DNA-RNA crRNAs on the Activity of the CRISPR-Cas9 System In Vitro. ACS Chem Biol 2024; 19:1311-1319. [PMID: 38814157 DOI: 10.1021/acschembio.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Currently, the CRISPR-Cas9 system serves as a prevalent tool for genome editing and gene expression regulation. Its therapeutic application is limited by off-target effects that can affect genomic integrity through nonspecific, undesirable changes in the genome. Various strategies have been explored to mitigate the off-target effects. Many approaches focus on modifying components of the system, namely, Cas9 and guide RNAs, to enhance specificity. However, a common challenge is that methods aiming to increase specificity often result in a significant reduction in the editing efficiency. Here, we introduce a novel approach to modifying crRNA to balance CRISPR-Cas9 specificity and efficiency. Our approach involves incorporating nucleoside modifications, such as replacing ribo- to deoxyribonucleosides and backbone modifications, using phosphoryl guanidine groups, specifically 1,3-dimethylimidazolidin-2-ylidene phosphoramidate. In this case, within the first 10 nucleotides from the 5' crRNA end, phosphodiester bonds are substituted with phosphoryl guanidine groups. We demonstrate that crRNAs containing a combination of deoxyribonucleosides and single or multiple phosphoryl guanidine groups facilitate the modulation of CRISPR-Cas9 system activity while improving its specificity in vitro.
Collapse
Affiliation(s)
- Daria V Prokhorova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Sergey A Zhukov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Timofey D Zharkov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Ilya S Dovydenko
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Kristina I Yakovleva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Ivan M Pereverzev
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Anastasiya M Matveeva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Dmitriy V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Golyshev VM, Yushin II, Gulyaeva OA, Baranovskaya EE, Lomzov AA. Properties of phosphoramide benzoazole oligonucleotides (PABAOs). I. Structure and hybridization efficiency of N-benzimidazole derivatives. Biochem Biophys Res Commun 2024; 693:149390. [PMID: 38128245 DOI: 10.1016/j.bbrc.2023.149390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
In this work, we for the first time conducted a detailed study on the structure, dynamics, and hybridization properties of N-benzimidazole group-bearing phosphoramide benzoazole oligonucleotides (PABAOs) that we developed recently. By circular dichroism we established that the introduction of the modifications does not disrupt the B conformation of the DNA double helix. The formation of complexes is approximated by a two-state model. Complexes of PABAOs with native oligodeoxriboynucleotides form efficiently, and the introduction of such modifications reduces thermal stability of short duplexes (8-10 bp) by ∼5°С per modification. Using UV-spectroscopy analysis, a neutral charge of the phosphate residue modified by the N-benzimidazole moiety in the pH range of 3-9.5 was found. The results confirm possible usefulness of PABAOs for both basic research and biomedical applications.
Collapse
Affiliation(s)
- Victor M Golyshev
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Ivan I Yushin
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Oksana A Gulyaeva
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Elizaveta E Baranovskaya
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Alexander A Lomzov
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
5
|
Chubarov AS, Oscorbin IP, Novikova LM, Filipenko ML, Lomzov AA, Pyshnyi DV. Allele-Specific PCR for PIK3CA Mutation Detection Using Phosphoryl Guanidine Modified Primers. Diagnostics (Basel) 2023; 13:diagnostics13020250. [PMID: 36673060 PMCID: PMC9858071 DOI: 10.3390/diagnostics13020250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Phosphoryl guanidine (PG) is the novel uncharged modification of internucleotide phosphates of oligonucleotides. Incorporating PG modification into PCR primers leads to increased discrimination between wild-type and mutated DNA, providing extraordinary detection limits in an allele-specific real-time polymerase chain reaction (AS-PCR). Herein, we used PG-modification to improve the specificity of AS primers with unfavorable Pyr/Pur primer's 3'-end mismatch in the template/primer complex. Two mutations of the PIK3CA gene (E542K, E545K) were chosen to validate the advantages of the PG modification. Several primers with PG modifications were synthesized for each mutation and assessed using AS-PCR with the plasmid controls and DNA obtained from formalin-fixed paraffin-embedded (FFPE) tissues. The assay allows the detection of 0.5% of mutated DNA on the wild-type DNA plasmid template's background with good specificity. Compared with ddPCR, the primers with PG-modification demonstrated 100% specificity and 100% sensitivity on the DNA from FFPE with mutation presence higher than 0.5%. Our results indicate the high potential of PG-modified primers for point mutation detection. The main principle of the developed methodology can be used to improve the specificity of primers regardless of sequences.
Collapse
|
6
|
Kandasamy P, McClorey G, Shimizu M, Kothari N, Alam R, Iwamoto N, Kumarasamy J, Bommineni GR, Bezigian A, Chivatakarn O, Butler DC, Byrne M, Chwalenia K, Davies KE, Desai J, Shelke JD, Durbin AF, Ellerington R, Edwards B, Godfrey J, Hoss A, Liu F, Longo K, Lu G, Marappan S, Oieni J, Paik IH, Estabrook EP, Shivalila C, Tischbein M, Kawamoto T, Rinaldi C, Rajão-Saraiva J, Tripathi S, Yang H, Yin Y, Zhao X, Zhou C, Zhang J, Apponi L, Wood MJ, Vargeese C. Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. Nucleic Acids Res 2022; 50:5443-5466. [PMID: 35061895 PMCID: PMC9178015 DOI: 10.1093/nar/gkac018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 01/04/2023] Open
Abstract
Although recent regulatory approval of splice-switching oligonucleotides (SSOs) for the treatment of neuromuscular disease such as Duchenne muscular dystrophy has been an advance for the splice-switching field, current SSO chemistries have shown limited clinical benefit due to poor pharmacology. To overcome limitations of existing technologies, we engineered chimeric stereopure oligonucleotides with phosphorothioate (PS) and phosphoryl guanidine-containing (PN) backbones. We demonstrate that these chimeric stereopure oligonucleotides have markedly improved pharmacology and efficacy compared with PS-modified oligonucleotides, preventing premature death and improving median survival from 49 days to at least 280 days in a dystrophic mouse model with an aggressive phenotype. These data demonstrate that chemical optimization alone can profoundly impact oligonucleotide pharmacology and highlight the potential for continued innovation around the oligonucleotide backbone. More specifically, we conclude that chimeric stereopure oligonucleotides are a promising splice-switching modality with potential for the treatment of neuromuscular and other genetic diseases impacting difficult to reach tissues such as the skeletal muscle and heart.
Collapse
Affiliation(s)
| | - Graham McClorey
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | | | | | | | | | | | | | | - Katarzyna Chwalenia
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | - Ruth Ellerington
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Ben Edwards
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | - Kenneth Longo
- Wave Life Sciences, Cambridge, MA, USA
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX2 9DU, UK
| | | | | | - Jacopo Oieni
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | | | | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX2 9DU, UK
| | - Joana Rajão-Saraiva
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | - Yuan Yin
- Wave Life Sciences, Cambridge, MA, USA
| | | | - Cong Zhou
- Wave Life Sciences, Cambridge, MA, USA
| | | | | | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX2 9DU, UK
| | | |
Collapse
|
7
|
Kupryushkin MS, Filatov AV, Mironova NL, Patutina OA, Chernikov IV, Chernolovskaya EL, Zenkova MA, Pyshnyi DV, Stetsenko DA, Altman S, Vlassov VV. Antisense oligonucleotide gapmers containing phosphoryl guanidine groups reverse MDR1-mediated multiple drug resistance of tumor cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:211-226. [PMID: 34976439 PMCID: PMC8693280 DOI: 10.1016/j.omtn.2021.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/28/2021] [Indexed: 10/26/2022]
Abstract
Antisense gapmer oligonucleotides containing phosphoryl guanidine (PG) groups, e.g., 1,3-dimethylimidazolidin-2-imine, at three to five internucleotidic positions adjacent to the 3' and 5' ends were prepared via the Staudinger chemistry, which is compatible with conditions of standard automated solid-phase phosphoramidite synthesis for phosphodiester and, notably, phosphorothioate linkages, and allows one to design a variety of gapmeric structures with alternating linkages, and deoxyribose or 2'-O-methylribose backbone. PG modifications increased nuclease resistance in serum-containing medium for more than 21 days. Replacing two internucleotidic phosphates by PG groups in phosphorothioate-modified oligonucleotides did not decrease their cellular uptake in the absence of lipid carriers. Increasing the number of PG groups from two to seven per oligonucleotide reduced their ability to enter the cells in the carrier-free mode. Cationic liposomes provided similar delivery efficiency of both partially PG-modified and unmodified oligonucleotides. PG-gapmers were designed containing three to four PG groups at both wings and a central "window" of seven deoxynucleotides with either phosphodiester or phosphorothioate linkages targeted to MDR1 mRNA providing multiple drug resistance of tumor cells. Gapmers efficiently silenced MDR1 mRNA and restored the sensitivity of tumor cells to chemotherapeutics. Thus, PG-gapmers can be considered as novel, promising types of antisense oligonucleotides for targeting biologically relevant RNAs.
Collapse
Affiliation(s)
- Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Anton V Filatov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Nadezhda L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Olga A Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Ivan V Chernikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| | - Dmitry A Stetsenko
- Department of Physics, Novosibirsk State University, Pirogov Str. 2, Novosibirsk 630090, Russia.,Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk 630090, Russia
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.,Life Sciences, Arizona State University, Tempe, AZ 85281, USA.,Montreal Clinical Research Institute, Montreal QC H2W 1R7, Canada
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Kandasamy P, Liu Y, Aduda V, Akare S, Alam R, Andreucci A, Boulay D, Bowman K, Byrne M, Cannon M, Chivatakarn O, Shelke JD, Iwamoto N, Kawamoto T, Kumarasamy J, Lamore S, Lemaitre M, Lin X, Longo K, Looby R, Marappan S, Metterville J, Mohapatra S, Newman B, Paik IH, Patil S, Purcell-Estabrook E, Shimizu M, Shum P, Standley S, Taborn K, Tripathi S, Yang H, Yin Y, Zhao X, Dale E, Vargeese C. Impact of guanidine-containing backbone linkages on stereopure antisense oligonucleotides in the CNS. Nucleic Acids Res 2022; 50:5401-5423. [PMID: 35106589 PMCID: PMC9177980 DOI: 10.1093/nar/gkac037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Attaining sufficient tissue exposure at the site of action to achieve the desired pharmacodynamic effect on a target is an important determinant for any drug discovery program, and this can be particularly challenging for oligonucleotides in deep tissues of the CNS. Herein, we report the synthesis and impact of stereopure phosphoryl guanidine-containing backbone linkages (PN linkages) to oligonucleotides acting through an RNase H-mediated mechanism, using Malat1 and C9orf72 as benchmarks. We found that the incorporation of various types of PN linkages to a stereopure oligonucleotide backbone can increase potency of silencing in cultured neurons under free-uptake conditions 10-fold compared with similarly modified stereopure phosphorothioate (PS) and phosphodiester (PO)-based molecules. One of these backbone types, called PN-1, also yielded profound silencing benefits throughout the mouse brain and spinal cord at low doses, improving both the potency and durability of response, especially in difficult to reach brain tissues. Given these benefits in preclinical models, the incorporation of PN linkages into stereopure oligonucleotides with chimeric backbone modifications has the potential to render regions of the brain beyond the spinal cord more accessible to oligonucleotides and, consequently, may also expand the scope of neurological indications amenable to oligonucleotide therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xuena Lin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | - Pochi Shum
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Kris Taborn
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Hailin Yang
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Yuan Yin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Xiansi Zhao
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Elena Dale
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | |
Collapse
|
9
|
Golyshev VM, Pyshnyi DV, Lomzov AA. Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation. Mol Biol 2021. [DOI: 10.1134/s002689332105006x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (ΔH°) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (ΔS°) contribution to the Gibbs energy ($$\Delta G_{{37}}^{^\circ }$$ ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the $$\Delta G_{{37}}^{^\circ }$$ of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds.
Collapse
|
10
|
Kanarskaya MA, Golyshev VM, Pyshnyi DV, Lomzov AA. Structure and hybridization properties of phosphoryl guanidine oligonucleotides under crowding conditions. Biochem Biophys Res Commun 2021; 577:110-115. [PMID: 34509722 DOI: 10.1016/j.bbrc.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Phosphoryl guanidine oligonucleotides (PGOs) are promising uncharged analogs of nucleic acids and are used in a variety of applications. The importance of hydration is frequently ignored during the design of modified nucleic acid probes. Such hydrophobic modifications (phosphoryl guanidine) are expected to have a significant impact on the structure and thermal stability of the affected oligo with complementary nucleic acids. Here we aimed to investigate (by the osmotic stress method) hydration changes upon the formation of a duplex of a PGO with complementary DNA. According to our results, the presence of phosphoryl guanidines in one or both strands of a duplex only minimally affects hydration alterations under crowding conditions. The secondary structure of native and modified duplexes did not change significantly in the presence of ethanol, ethylene glycol, polyethylene glycol 200, or polyethylene glycol 1000. After the addition of a cosolvent, the thermodynamic stability of the PGO complexes changed in the same manner as that seen in a corresponding DNA duplex. The findings reported here and our previous studies form the basis for efficient use of PGOs in basic research and a variety of applications.
Collapse
Affiliation(s)
- Maria A Kanarskaya
- Laboratory of Biomedical Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Victor M Golyshev
- Laboratory of Biomedical Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Dmitrii V Pyshnyi
- Laboratory of Biomedical Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Alexander A Lomzov
- Laboratory of Biomedical Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|