1
|
Dallari F, Lokteva I, Möller J, Roseker W, Goy C, Westermeier F, Boesenberg U, Hallmann J, Rodriguez-Fernandez A, Scholz M, Shayduk R, Madsen A, Grübel G, Lehmkühler F. Real-time swelling-collapse kinetics of nanogels driven by XFEL pulses. SCIENCE ADVANCES 2024; 10:eadm7876. [PMID: 38640237 PMCID: PMC11029799 DOI: 10.1126/sciadv.adm7876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Stimuli-responsive polymers are an important class of materials with many applications in nanotechnology and drug delivery. The most prominent one is poly-N-isopropylacrylamide (PNIPAm). The characterization of the kinetics of its change after a temperature jump is still a lively research topic, especially at nanometer-length scales where it is not possible to rely on conventional microscopic techniques. Here, we measured in real time the collapse of a PNIPAm shell on silica nanoparticles with megahertz x-ray photon correlation spectroscopy at the European XFEL. We characterize the changes of the particles diffusion constant as a function of time and consequently local temperature on sub-microsecond timescales. We developed a phenomenological model to describe the observed data and extract the characteristic times associated to the swelling and collapse processes. Different from previous studies tracking the turbidity of PNIPAm dispersions and using laser heating, we find collapse times below microsecond timescales and two to three orders of magnitude slower swelling times.
Collapse
Affiliation(s)
- Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics and Astronmy, University of Padua, Via Marzolo 8, 35131 Padova, Italy
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Ulrike Boesenberg
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jörg Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Markus Scholz
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Roman Shayduk
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Anders Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Linn JD, Rodriguez FA, Calabrese MA. Cosolvent incorporation modulates the thermal and structural response of PNIPAM/silyl methacrylate copolymers. SOFT MATTER 2024; 20:3322-3336. [PMID: 38536224 DOI: 10.1039/d4sm00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Polymers functionalized with inorganic silane groups have been used in wide-ranging applications due to the silane reactivity, which enables formation of covalently-crosslinked polymeric structures. Utilizing stimuli-responsive polymers in these hybrid systems can lead to smart and tunable behavior for sensing, drug delivery, and optical coatings. Previously, the thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAM) functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMA) demonstrated unique aqueous self-assembly and optical responses following temperature elevation. Here, we investigate how cosolvent addition, particularly ethanol and N,N-dimethyl formamide (DMF), impacts these transition temperatures, optical clouding, and structure formation in NIPAM/TMA copolymers. Versus purely aqueous systems, these solvent mixtures can introduce additional phase transitions and can alter the two-phase region boundaries based on temperature and solvent composition. Interestingly, TMA incorporation strongly alters phase boundaries in the water-rich regime for DMF-containing systems but not for ethanol-containing systems. Cosolvent species and content also alter the aggregation and assembly of NIPAM/TMA copolymers, but these effects depend on polymer architecture. For example, localizing the TMA towards one chain end in 'blocky' domains leads to formation of uniform micelles with narrow dispersities above the cloud point for certain solvent compositions. In contrast, polydisperse aggregates form in random copolymer and PNIPAM homopolymer solutions - the size of which depends on solvent composition. The resulting optical responses and thermoreversibility also depend strongly on cosolvent content and copolymer architecture. Cosolvent incorporation thus increases the versatility of inorganic-functionalized responsive polymers for diverse applications by providing a simple way to tune the structure size and optical response.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Fabian A Rodriguez
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Fernandez-Rodriguez MA, Orozco-Barrera S, Sun W, Gámez F, Caro C, García-Martín ML, Rica RA. Hot Brownian Motion of Thermoresponsive Microgels in Optical Tweezers Shows Discontinuous Volume Phase Transition and Bistability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301653. [PMID: 37158287 DOI: 10.1002/smll.202301653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Microgels are soft microparticles that often exhibit thermoresponsiveness and feature a transformation at a critical temperature, referred to as the volume phase transition temperature. Whether this transformation occurs as a smooth or as a discontinuous one is still a matter of debate. This question can be addressed by studying individual microgels trapped in optical tweezers. For this aim, composite particles are obtained by decorating Poly-N-isopropylacrylamide (pNIPAM) microgels with iron oxide nanocubes. These composites become self-heating when illuminated by the infrared trapping laser, performing hot Brownian motion within the trap. Above a certain laser power, a single decorated microgel features a volume phase transition that is discontinuous, while the usual continuous sigmoidal-like dependence is recovered after averaging over different microgels. The collective sigmoidal behavior enables the application of a power-to-temperature calibration and provides the effective drag coefficient of the self-heating microgels, thus establishing these composite particles as potential micro-thermometers and micro-heaters. Moreover, the self-heating microgels also exhibit an unexpected and intriguing bistability behavior above the critical temperature, probably due to partial collapses of the microgel. These results set the stage for further studies and the development of applications based on the hot Brownian motion of soft particles.
Collapse
Affiliation(s)
- Miguel Angel Fernandez-Rodriguez
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Laboratory of Surface and Interface Physics, Department of Applied Physics, Faculty of Sciences, Universidad de Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Sergio Orozco-Barrera
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Wei Sun
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Department of Physics, Yanshan University, Qinhuangdao, 066004, China
| | - Francisco Gámez
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Carlos Caro
- Department of Physical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María L García-Martín
- Department of Physical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Instituto de Investigación Bioméadica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), C/ Severo Ochoa, 35, 29590, Málaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Raúl Alberto Rica
- Universidad de Granada, Nanoparticles Trapping Laboratory, Department of Applied Physics, Faculty of Sciences, Campus de Fuentenueva s/n, 18071, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| |
Collapse
|
4
|
Moncho-Jordá A, Göth N, Dzubiella J. Liquid structure of bistable responsive macromolecules using mean-field density-functional theory. SOFT MATTER 2023; 19:2832-2846. [PMID: 37000605 DOI: 10.1039/d2sm01523d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Macromolecular crowding typically applies to biomolecular and polymer-based systems in which the individual particles often feature a two-state folded/unfolded or coil-to-globule transition, such as found for proteins and peptides, DNA and RNA, or supramolecular polymers. Here, we employ a mean-field density functional theory (DFT) of a model of soft and bistable responsive colloids (RCs) in which the size of the macromolecule is explicitly resolved as a degree of freedom living in a bimodal 'Landau' energy landscape (exhibiting big and small states), thus directly responding to the crowding environment. Using this RC-DFT we study the effects of self-crowding on the liquid bulk structure and thermodynamics for different energy barriers and softnesses of the bimodal energy landscape, in conditions close to the coil-to-globule transition. We find substantial crowding effects on the internal distributions, a complex polydispersity behavior, and quasi-universal compression curves for increasing (generalized) packing fractions. Moreover, we uncover distinct signatures of bimodal versus unimodal behavior in the particle compression. Finally, the analysis of the pair structure - derived from the test particle route - reveals that the microstructure of the liquid is quite inhomogeneous due to local depletion effects, tuneable by particle softness.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Nils Göth
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| |
Collapse
|
5
|
Fandrich P, Esteban Vázquez J, Haverkamp R, Hellweg T. Growth of Smart Microgels in a Flow Reactor Scrutinized by In-Line SAXS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1084-1092. [PMID: 36630721 DOI: 10.1021/acs.langmuir.2c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, a continuous flow setup for in situ investigation of microgel growth with small-angle X-ray scattering (SAXS) is established. Poly(N-n-propylacrylamide) (PNNPAM) and poly(N-isopropylacrylamide) (PNIPAM) microgels are synthesized in H2O at different residence times inside a continuous flow reactor. The microgels are investigated by in situ SAXS and ex situ photon correlation spectroscopy. The size of the microgels was found to be reproducible in independent experiments with run times of up to 7 h. Already the scattering curves of the microgels with a time of residence of 15 min show a well-defined form factor. Further analysis of the scattering profiles confirms the spherical shape of the microgels. At a residence time of 2 min, the scattering intensity is significantly lower corresponding to a smaller particle size. The experimental conditions remain constant over time, which is crucial for long-time experiments. The PNNPAM system is found to be more suitable for the flow reactor experiment with in-line SAXS as it shows less polymer deposition in the tubing and forms particles with lower polydispersity. The presented reactor is characterized by a compact design and offers a plug-and-play setup close to the sample environment. This work paves the way for investigations of microgel growth at e.g. synchrotron X-ray beamlines.
Collapse
Affiliation(s)
- Pascal Fandrich
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| | - Jorge Esteban Vázquez
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| | - René Haverkamp
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615Bielefeld, Germany
| |
Collapse
|
6
|
Schlattmann D, Schönhoff M. Interplay of the Influence of Crosslinker Content and Model Drugs on the Phase Transition of Thermoresponsive PNiPAM-BIS Microgels. Gels 2022; 8:gels8090571. [PMID: 36135283 PMCID: PMC9498534 DOI: 10.3390/gels8090571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The phase transition behavior of differently crosslinked poly(N-isopropylacrylamide)/N,N’-methylenebisacrylamide (PNiPAM/BIS) microgels with varying crosslinker content is investigated in presence of aromatic additives. The influence of meta-hydroxybenzaldehyde (m-HBA) and 2,4-dihydroxybenzaldehyde (2,4-DHBA), chosen as model drugs, on the volume phase transition temperature (VPTT) is analyzed by dynamic light scattering (DLS), differential scanning calorimetry (DSC), and 1H-NMR, monitoring and comparing the structural, calorimetric, and dynamic phase transition, respectively. Generally, the VPTT is found to increase with crosslinker content, accompanied by a drastic decrease of transition enthalpy. The presence of an additive generally decreases the VPTT, but with distinct differences concerning the crosslinker content. While the structural transition is most affected at lowest crosslinker content, the calorimetric and dynamic transitions are most affected for an intermediate crosslinker content. Additive uptake of the collapsed gel is largest for low crosslinked microgels and in case of large additive-induced temperature shifts. Furthermore, as temperature is successively raised, 1H NMR data, aided by spin relaxation rates, reveal an interesting uptake behavior, as the microgels act in a sponge-like fashion including a large initial uptake and a squeeze-out phase above VPTT.
Collapse
|
7
|
Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. SOFT MATTER 2022; 18:2884-2909. [PMID: 35311857 DOI: 10.1039/d2sm00146b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Bart-Jan Niebuur
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Nothdurft
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Nico F A van der Vegt
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Christine M Papadakis
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
8
|
Sbeih S, Mohanty PS, Yethiraj A, Morrow MR. 2H NMR Study of Polymer Segmental Dynamics at Varying Cross-Linking in Poly( N-isopropylacrylamide) Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13664-13675. [PMID: 34767370 DOI: 10.1021/acs.langmuir.1c02269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A microscopic understanding of the internal structure and dynamics of poly(N-isopropylacrylamide) (PNIPAM) chains, in microgel colloids, is developed using deuterium NMR (2H NMR) to study deuterated PNIPAM suspensions as functions of temperature and pressure for four cross-linker molar fractions (f). The PNIPAM polymers were labeled with deuterons at the backbone (d3-PNIPAM) or on side chains (d7-PNIPAM). 2H NMR spectra of the d3-PNIPAM suspensions for all cross-linker molar fractions indicated freely moving chains at low temperature and a nearly immobilized fraction above ∼35 °C. Polymer segments in the collapsed phase of the d3-PNIPAM suspension were more mobile than those in the dry powder. This is direct microscopic evidence that the polymer remains significantly hydrated in the collapsed phase, consistent with strong, indirect evidence from recent light scattering and rheology measurements from our laboratory. However, the observation of a small fraction of immobilized segments in the swollen phase for higher cross-linker molar fraction suggests that, particularly for high levels of cross-linking, some polymer is nonhydrated even in the swollen phase. Finally, variable-pressure NMR (up to 90 MPa) showed a slight increase in transition temperature with pressure for lower cross-linker molar fractions and a larger increase in transition temperature with pressure for higher cross-linker molar fractions. This is consistent with a previously reported dependence of collapse transition enthalpy on cross-linker molar fraction.
Collapse
Affiliation(s)
- Suhad Sbeih
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B 3X7
- School of Basic Sciences and Humanities, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan
| | - Priti S Mohanty
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar 751024, India
| | - Anand Yethiraj
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B 3X7
| | - Michael R Morrow
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B 3X7
| |
Collapse
|
9
|
Nanogels: An overview of properties, biomedical applications, future research trends and developments. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Sharma A, Raghunathan K, Solhaug H, Antony J, Stenvik J, Nilsen AM, Einarsrud MA, Bandyopadhyay S. Modulating acrylic acid content of nanogels for drug delivery & biocompatibility studies. J Colloid Interface Sci 2021; 607:76-88. [PMID: 34492356 DOI: 10.1016/j.jcis.2021.07.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Dual stimuli-responsive nanogels (NGs) have gained popularity in the field of bio medicine due to their versatile nature of applicability. Poly(N-isopropylacrylamide)-co-poly(acrylic acid) (pNIPAm-pAAc)-based NGs provide such dual stimuli-response with pNIPAm and pAAc providing thermal and pH-based responses, respectively. Studying the growth of these NGs, as well as, understanding the effect of the incorporation of pAAc in the NG matrix, is important in determining the physico-chemical properties of the NG. Studies have been conducted investigating the effect of increasing pAAc content in the NGs, however, these are not detailed in understanding its effects on the physico-chemical properties of the pNIPAm-pAAc-based NGs. Also, the biocompatibility of the NGs have not been previously reported using human whole blood model. Herein, we report the effect of different reaction parameters, such as surfactant amount and reaction atmosphere, on the growth of pNIPAm-pAAc-based NGs. It is shown that the size of the NGs can be precisely controlled from ~130 nm to ~400 nm, by varying the amount of surfactant and the reaction atmosphere. The effect of increasing incorporation of pAAc in the NG matrix on its physico-chemical properties has been investigated. The potential of these NGs as drug delivery vehicles is investigated by conducting loading and release studies of a model protein drug, cytochrome C (Cyt C) from the NGs at temperature above the volume phase transition temperature (VPTT) and acidic pH. An ex vivo human whole blood model was used to investigate biocompatibility of the NGs by quantifying inflammatory responses during NG exposure. The NGs did not induce any significant production of chemokine IL-8 or pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), and the cell viability in human whole blood was maintained during 4 h exposure. The NGs did neither activate the complement system, as determined by low Terminal Complement Complex (TCC) activation and Complement Receptor 3 (CR3) activation assays, thereby overall suggesting that the NGs could be potential candidates for biomedical applications.
Collapse
Affiliation(s)
- Anuvansh Sharma
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Karthik Raghunathan
- Department of Chemical Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Helene Solhaug
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Jibin Antony
- Department of Chemical Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Jørgen Stenvik
- Centre of Molecular Inflammation Research, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Asbjørn Magne Nilsen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Mari-Ann Einarsrud
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Norway
| | - Sulalit Bandyopadhyay
- Department of Chemical Engineering, NTNU Norwegian University of Science and Technology, Norway.
| |
Collapse
|