1
|
Hartich D, Godec A. Comment on "Inferring broken detailed balance in the absence of observable currents". Nat Commun 2024; 15:8678. [PMID: 39375350 PMCID: PMC11458581 DOI: 10.1038/s41467-024-52602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/02/2024] [Indexed: 10/09/2024] Open
Affiliation(s)
- David Hartich
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Berezhkovskii AM, Makarov DE. The significance of fuzzy boundaries of the barrier regions in single-molecule measurements of failed barrier crossing attempts. J Chem Phys 2024; 161:101101. [PMID: 39248382 PMCID: PMC11387013 DOI: 10.1063/5.0227497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
A recent ground-breaking experimental study [Lyons et al., Phys. Rev. X 14(1), 011017 (2024)] reports on measuring the temporal duration and the spatial extent of failed attempts to cross an activation barrier (i.e., "loops") for a folding transition in a single molecule and for a Brownian particle trapped within a bistable potential. Within the model of diffusive dynamics, however, both of these quantities are, on average, exactly zero because of the recrossings of the barrier region boundary. That is, an observer endowed with infinite spatial and temporal resolution would find that finite loops do not exist (or, more precisely, form a set of measure zero). Here we develop a description of the experiment that takes the "fuzziness" of the boundaries caused by finite experimental resolution into account and show how the experimental uncertainty of localizing the point, in time and space, where the barrier is crossed leads to observable distributions of loop times and sizes. Although these distributions generally depend on the experimental resolution, this dependence, in certain cases, may amount to a simple resolution-dependent factor and, therefore, the experiments do probe inherent properties of barrier crossing dynamics.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section of Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20819, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
3
|
Kumar V, Pal A, Shpielberg O. Arrhenius law for interacting diffusive systems. Phys Rev E 2024; 109:L032101. [PMID: 38632768 DOI: 10.1103/physreve.109.l032101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Finding the mean time it takes for a particle to escape from a metastable state due to thermal fluctuations is a fundamental problem in physics, chemistry, and biology. Here, we consider the escape rate of interacting diffusive particles, from a deep potential trap within the framework of the macroscopic fluctuation theory-a nonequilibrium hydrodynamic theory. For systems without excluded volume, our investigation reveals adherence to the well-established Arrhenius law. However, in the presence of excluded volume, a universality class emerges, fundamentally altering the escape rate. Remarkably, the modified escape rate within this universality class is independent of the interactions at play. The universality class, demonstrating the importance of excluded volume effects, may bring insights to the interpretation of escape processes in the realm of chemical physics.
Collapse
Affiliation(s)
- Vishwajeet Kumar
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ohad Shpielberg
- Department of Mathematics and Physics, University of Haifa at Oranim, Kiryat Tivon 3600600, Israel
- Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Abba Khoushy Avenue 199, Haifa 3498838, Israel
| |
Collapse
|
4
|
Bhatia S, Udgaonkar JB. Understanding the heterogeneity intrinsic to protein folding. Curr Opin Struct Biol 2024; 84:102738. [PMID: 38041993 DOI: 10.1016/j.sbi.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023]
Abstract
Relating the native fold of a protein to its amino acid sequence remains a fundamental problem in biology. While computer algorithms have demonstrated recently their prowess in predicting what structure a particular amino acid sequence will fold to, an understanding of how and why a specific protein fold is achieved remains elusive. A major challenge is to define the role of conformational heterogeneity during protein folding. Recent experimental studies, utilizing time-resolved FRET, hydrogen-exchange coupled to mass spectrometry, and single-molecule force spectroscopy, often in conjunction with simulation, have begun to reveal how conformational heterogeneity evolves during folding, and whether an intermediate ensemble of defined free energy consists of different sub-populations of molecules that may differ significantly in conformation, energy and entropy.
Collapse
Affiliation(s)
- Sandhya Bhatia
- Department of Biophysics, Howard Hughes Medical Institute UT Southwestern Medical Center, Dallas 75390, United States. https://twitter.com/Sandhyabhatia_5
| | - Jayant B Udgaonkar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pashan, Pune 41008, India.
| |
Collapse
|
5
|
Jain S, Boyer D, Pal A, Dagdug L. Fick-Jacobs description and first passage dynamics for diffusion in a channel under stochastic resetting. J Chem Phys 2023; 158:054113. [PMID: 36754825 DOI: 10.1063/5.0135249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The transport of particles through channels is of paramount importance in physics, chemistry, and surface science due to its broad real world applications. Much insight can be gained by observing the transition paths of a particle through a channel and collecting statistics on the lifetimes in the channel or the escape probabilities from the channel. In this paper, we consider the diffusive transport through a narrow conical channel of a Brownian particle subject to intermittent dynamics, namely, stochastic resetting. As such, resetting brings the particle back to a desired location from where it resumes its diffusive phase. To this end, we extend the Fick-Jacobs theory of channel-facilitated diffusive transport to resetting-induced transport. Exact expressions for the conditional mean first passage times, escape probabilities, and the total average lifetime in the channel are obtained, and their behavior as a function of the resetting rate is highlighted. It is shown that resetting can expedite the transport through the channel-rigorous constraints for such conditions are then illustrated. Furthermore, we observe that a carefully chosen resetting rate can render the average lifetime of the particle inside the channel minimal. Interestingly, the optimal rate undergoes continuous and discontinuous transitions as some relevant system parameters are varied. The validity of our one-dimensional analysis and the corresponding theoretical predictions is supported by three-dimensional Brownian dynamics simulations. We thus believe that resetting can be useful to facilitate particle transport across biological membranes-a phenomenon that can spearhead further theoretical and experimental studies.
Collapse
Affiliation(s)
- Siddharth Jain
- Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad (Prayagraj), UP, 211019, India
| | - Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Leonardo Dagdug
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México 09340, Mexico
| |
Collapse
|
6
|
Bryan JS, Pressé S. Learning continuous potentials from smFRET. Biophys J 2023; 122:433-441. [PMID: 36463404 PMCID: PMC9892619 DOI: 10.1016/j.bpj.2022.11.2947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Potential energy landscapes are useful models in describing events such as protein folding and binding. While single-molecule fluorescence resonance energy transfer (smFRET) experiments encode information on continuous potentials for the system probed, including rarely visited barriers between putative potential minima, this information is rarely decoded from the data. This is because existing analysis methods often model smFRET output assuming, from the onset, that the system probed evolves in a discretized state space to be analyzed within a hidden Markov model (HMM) paradigm. By contrast, here, we infer continuous potentials from smFRET data without discretely approximating the state space. We do so by operating within a Bayesian nonparametric paradigm by placing priors on the family of all possible potential curves. As our inference accounts for a number of required experimental features raising computational cost (such as incorporating discrete photon shot noise), the framework leverages a structured-kernel-interpolation Gaussian process prior to help curtail computational cost. We show that our structured-kernel-interpolation priors for potential energy reconstruction from smFRET analysis accurately infers the potential energy landscape from a smFRET binding experiment. We then illustrate advantages of structured-kernel-interpolation priors for potential energy reconstruction from smFRET over standard HMM approaches by providing information, such as barrier heights and friction coefficients, that is otherwise inaccessible to HMMs.
Collapse
Affiliation(s)
- J Shepard Bryan
- Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona; Department of Physics, Arizona State University, Tempe, Arizona; School of Molecular Sciences, Arizona State University, Tempe, Arizona.
| |
Collapse
|
7
|
Makarov DE, Berezhkovskii A, Haran G, Pollak E. The Effect of Time Resolution on Apparent Transition Path Times Observed in Single-Molecule Studies of Biomolecules. J Phys Chem B 2022; 126:7966-7974. [PMID: 36194758 PMCID: PMC9574923 DOI: 10.1021/acs.jpcb.2c05550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Single-molecule experiments have now achieved a time resolution allowing observation of transition paths, the brief trajectory segments where the molecule undergoing an unfolding or folding transition enters the energetically or entropically unfavorable barrier region from the folded/unfolded side and exits to the unfolded/folded side, thereby completing the transition. This resolution, however, is yet insufficient to identify the precise entrance/exit events that mark the beginning and the end of a transition path: the nature of the diffusive dynamics is such that a molecular trajectory will recross the boundary between the barrier region and the folded/unfolded state, multiple times, at a time scale much shorter than that of the typical experimental resolution. Here we use theory and Brownian dynamics simulations to show that, as a result of such recrossings, the apparent transition path times are generally longer than the true ones. We quantify this effect using a simple model where the observed dynamics is a moving average of the true dynamics and discuss experimental implications of our results.
Collapse
Affiliation(s)
- Dmitrii E. Makarov
- Depatment
of Chemistry and Oden Institute for Computational Engineering and
Sciences, University of Texas at Austin, Austin, Texas78712, United States
| | - Alexander Berezhkovskii
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Gilad Haran
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Eli Pollak
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| |
Collapse
|
8
|
Berezhkovskii AM, Makarov DE. On distributions of barrier crossing times as observed in single-molecule studies of biomolecules. BIOPHYSICAL REPORTS 2021; 1:100029. [PMID: 36425456 PMCID: PMC9680812 DOI: 10.1016/j.bpr.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 06/16/2023]
Abstract
Single-molecule experiments that monitor time evolution of molecular observables in real time have expanded beyond measuring transition rates toward measuring distributions of times of various molecular events. Of particular interest is the first-passage time for making a transition from one molecular configuration ( a ) to another ( b ) and conditional first-passage times such as the transition path time, which is the first-passage time from a to b conditional upon not leaving the transition region intervening between a and b . Another experimentally accessible (but not yet studied experimentally) observable is the conditional exit time, i.e., the time to leave the transition region through a specified boundary. The distributions of such times contain a wealth of mechanistic information about the transitions in question. Here, we use the first and the second (and, if desired, higher) moments of these distributions to characterize their relative width for the model in which the experimental observable undergoes Brownian motion in a potential of mean force. We show that although the distributions of transition path times are always narrower than exponential (in that the ratio of the standard deviation to the distribution's mean is always less than 1), distributions of first-passage times and of conditional exit times can be either narrow or broad, in some cases displaying long power-law tails. The conditional exit time studied here provides a generalization of the transition path time that also allows one to characterize the temporal scales of failed barrier crossing attempts.
Collapse
Affiliation(s)
- Alexander M. Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Dmitrii E. Makarov
- Department of Chemistry and Biochemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas
| |
Collapse
|
9
|
Freitas FC, Fuchs G, de Oliveira RJ, Whitford PC. The dynamics of subunit rotation in a eukaryotic ribosome. BIOPHYSICA 2021; 1:204-221. [PMID: 37484008 PMCID: PMC10361705 DOI: 10.3390/biophysica1020016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Protein synthesis by the ribosome is coordinated by an intricate series of large-scale conformational rearrangements. Structural studies can provide information about long-lived states, however biological kinetics are controlled by the intervening free-energy barriers. While there has been progress describing the energy landscapes of bacterial ribosomes, very little is known about the energetics of large-scale rearrangements in eukaryotic systems. To address this topic, we constructed an all-atom model with simplified energetics and performed simulations of subunit rotation in the yeast ribosome. In these simulations, the small subunit (SSU; ~1MDa) undergoes spontaneous and reversible rotations (~8°). By enabling the simulation of this rearrangement under equilibrium conditions, these calculations provide initial insights into the molecular factors that control dynamics in eukaryotic ribosomes. Through this, we are able to identify specific inter-subunit interactions that have a pronounced influence on the rate-limiting free-energy barrier. We also show that, as a result of changes in molecular flexibility, the thermodynamic balance between the rotated and unrotated states is temperature-dependent. This effect may be interpreted in terms of differential molecular flexibility within the rotated and unrotated states. Together, these calculations provide a foundation, upon which the field may begin to dissect the energetics of these complex molecular machines.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Gabriele Fuchs
- Department of Biological Sciences, The RNA Institute, University at Albany 1400 Washington Ave, Albany, NY,12222
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Paul Charles Whitford
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| |
Collapse
|
10
|
Neumann J, Ludwig R, Paschek D. Hydrogen Bonds between Ions of Opposite and Like Charge in Hydroxyl-Functionalized Ionic Liquids: an Exhaustive Examination of the Interplay between Global and Local Motions and Intermolecular Hydrogen Bond Lifetimes and Kinetics. J Phys Chem B 2021; 125:5132-5144. [PMID: 33971719 DOI: 10.1021/acs.jpcb.1c02756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxyl-functionalized ionic liquids (ILs) represent a new interesting class of ILs where hydrogen bonds (HBs) play an important role: here, "typical" HBs between cations and anions (ca) are competing with "atypical" HBs connecting pairs of cations (cc). We study the equilibrium and kinetics of (cc) and (ca) HBs in 1-(n-hydroxyalkyl)-pyridinium bis(trifluoromethlysulfonyl)imide [HOCnPy][NTf2] ILs by means of molecular dynamics simulations. (cc) HBs are found to be between 0.96 and 3.76 kJ mol-1 stronger than their (ca) counterparts, depending on the alkyl chain length. HB lifetimes and kinetics are analyzed by means of HB population and reactive flux correlation functions. Essentially, four different HB lifetimes have to be considered, spanning about 3 orders of magnitude, each valid in its own right and each associated with different aspects of HB breaking and HB reformation. The long-time limiting behavior of the HB population correlation function is controlled by diffusion of the ions and can be quantitatively described by analytical expressions. The short-time HB behavior is tied to the localized dynamics of the hydroxyl group exploring its local solvation environment. A minimalist kinetic two-domain model is introduced to realistically describe the time evolution of the HB population correlation function for both (ca) and (cc) HBs over 5 orders of magnitude. By employing the reactive flux method, we determine the kinetics of HB breaking, unaffected by diffusion processes. We determine both, the ultrafast upper boundary and the average rate of HB breaking, allowing recrossing-events during the transient relaxation time period. For sufficiently long alkyl chains, all those computed HB lifetimes indicate a higher kinetic stability of (cc) HBs over (ca) HBs; for short chains, it is vice-versa.
Collapse
Affiliation(s)
- Jan Neumann
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Albert-Einstein-Str. 21, D-18059 Rostock, Germany
| | - Ralf Ludwig
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Dr.-Lorenz-Weg 2, D-18059 Rostock, Germany.,Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Str. 25, D-18059 Rostock, Germany.,Leibniz Institut für Katalyse an der Universität Rostock, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | - Dietmar Paschek
- Institut für Chemie, Abteilung Physikalische und Theoretische Chemie, Universität Rostock, Albert-Einstein-Str. 21, D-18059 Rostock, Germany
| |
Collapse
|