1
|
Gorzkiewicz M, Cramer J, Xu HC, Lang PA. The role of glycosylation patterns of viral glycoproteins and cell entry receptors in arenavirus infection. Biomed Pharmacother 2023; 166:115196. [PMID: 37586116 DOI: 10.1016/j.biopha.2023.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
Mammarenaviruses are enveloped RNA viruses that can be associated with rodent-transmitted diseases in humans. Their virions are composed of a nucleocapsid surrounded by a lipid bilayer with glycoprotein (GP) spikes interacting with receptors on target cells. Both the GP and receptors are highly glycosylated, with glycosylation patterns being crucial for virus binding and cell entry, viral tropism, immune responses, or therapy strategies. These effects have been previously described for several different viruses. In case of arenaviruses, they remain insufficiently understood. Thus, it is important to determine the mechanisms of glycosylation of viral proteins and receptors responsible for infection, in order to fully understand the biology of arenaviruses. In this article, we have summarized and critically evaluated the available literature data on the glycosylation of mammarenavirus-associated proteins to facilitate further research in this field.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
2
|
Perrett HR, Brouwer PJM, Hurtado J, Newby ML, Liu L, Müller-Kräuter H, Müller Aguirre S, Burger JA, Bouhuijs JH, Gibson G, Messmer T, Schieffelin JS, Antanasijevic A, Boons GJ, Strecker T, Crispin M, Sanders RW, Briney B, Ward AB. Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies. Cell Rep 2023; 42:112524. [PMID: 37209096 PMCID: PMC10242449 DOI: 10.1016/j.celrep.2023.112524] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Lassa fever is an acute hemorrhagic fever caused by the zoonotic Lassa virus (LASV). The LASV glycoprotein complex (GPC) mediates viral entry and is the sole target for neutralizing antibodies. Immunogen design is complicated by the metastable nature of recombinant GPCs and the antigenic differences among phylogenetically distinct LASV lineages. Despite the sequence diversity of the GPC, structures of most lineages are lacking. We present the development and characterization of prefusion-stabilized, trimeric GPCs of LASV lineages II, V, and VII, revealing structural conservation despite sequence diversity. High-resolution structures and biophysical characterization of the GPC in complex with GP1-A-specific antibodies suggest their neutralization mechanisms. Finally, we present the isolation and characterization of a trimer-preferring neutralizing antibody belonging to the GPC-B competition group with an epitope that spans adjacent protomers and includes the fusion peptide. Our work provides molecular detail information on LASV antigenic diversity and will guide efforts to design pan-LASV vaccines.
Collapse
Affiliation(s)
- Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philip J M Brouwer
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan Hurtado
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Joey H Bouhuijs
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Terrence Messmer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - John S Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers. Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Center for Viral Systems Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Data-independent acquisition mass spectrometry for site-specific glycoproteomics characterization of SARS-CoV-2 spike protein. Anal Bioanal Chem 2021; 413:7305-7318. [PMID: 34635934 PMCID: PMC8505113 DOI: 10.1007/s00216-021-03643-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022]
Abstract
The spike protein of SARS-CoV-2, the virus responsible for the global pandemic of COVID-19, is an abundant, heavily glycosylated surface protein that plays a key role in receptor binding and host cell fusion, and is the focus of all current vaccine development efforts. Variants of concern are now circulating worldwide that exhibit mutations in the spike protein. Protein sequence and glycosylation variations of the spike may affect viral fitness, antigenicity, and immune evasion. Global surveillance of the virus currently involves genome sequencing, but tracking emerging variants should include quantitative measurement of changes in site-specific glycosylation as well. In this work, we used data-dependent acquisition (DDA) and data-independent acquisition (DIA) mass spectrometry to quantitatively characterize the five N-linked glycosylation sites of the glycoprotein standard alpha-1-acid glycoprotein (AGP), as well as the 22 sites of the SARS-CoV-2 spike protein. We found that DIA compared favorably to DDA in sensitivity, resulting in more assignments of low-abundance glycopeptides. However, the reproducibility across replicates of DIA-identified glycopeptides was lower than that of DDA, possibly due to the difficulty of reliably assigning low-abundance glycopeptides confidently. The differences in the data acquired between the two methods suggest that DIA outperforms DDA in terms of glycoprotein coverage but that overall performance is a balance of sensitivity, selectivity, and statistical confidence in glycoproteomics. We assert that these analytical and bioinformatics methods for assigning and quantifying glycoforms would benefit the process of tracking viral variants as well as for vaccine development.
Collapse
|