1
|
Thissen J, Klassen MD, Hacker MC, Breitkreutz J, Teutenberg T, Fischer B. Online coupling of size exclusion chromatography to capillary-enhanced Raman spectroscopy for the identification of protein classes in hemolyzed blood serum. Anal Bioanal Chem 2025; 417:335-344. [PMID: 39556139 DOI: 10.1007/s00216-024-05649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
The analysis of serum for biomarkers is a standard method in clinical diagnosis and health assessment. The application of Raman spectroscopy to probe biomarkers in serum is increasingly investigated due to its time- and cost-efficiency. However, time-consuming sample preparation is often required to analyze the serum samples. Additionally, hemolyzed samples are commonly discarded due to interference in the measurements. This study focuses on the application of the online coupling of size exclusion chromatography (SEC) to diode array detector (DAD) and capillary-enhanced Raman spectroscopy (CERS) for direct analysis of hemolyzed serum samples. We demonstrate that different protein classes such as serum albumin and immunoglobulin G (IgG) can be identified in hemolyzed serum according to a calculated hit quality index (HQI). Additionally, different oxidation and binding states of the heme prosthetic group are investigated at 532-nm excitation. The online coupling of SEC-DAD-CERS enables the detailed characterization of blood serum proteins, including the differentiation of IgG, serum albumin, and hemoglobin.
Collapse
Affiliation(s)
- Jana Thissen
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Martin D Klassen
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thorsten Teutenberg
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229, Duisburg, Germany.
| | - Björn Fischer
- Institute of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207949. [PMID: 36942720 DOI: 10.1002/smll.202207949] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| |
Collapse
|
3
|
Stepanenko T, Zając G, Czajkowski A, Rutkowska W, Górecki A, Marzec KM, Dybas J. Sulfhemoglobin under the spotlight - Detection and characterization of SHb and HbFe III-SH. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119378. [PMID: 36220452 DOI: 10.1016/j.bbamcr.2022.119378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Sulfhemoglobinemia is an incurable disease caused by an overdose of sulfur-containing drugs with oxidizing properties. Its diagnosis remains hindered due to the similarity of symptoms to other pathological state - methemoglobinemia, as well as contradictory information on the structure and characteristics of sulfhemoglobin. Herein, we present sulfhemoglobinemia model on living functional human erythrocytes, designed to recreate processes which could take place in a patient body in order to complement missing information and highlight distinctiveness of two hemoglobin (Hb) adducts formed after interaction with sulfur donors. Employed techniques, UV-Vis absorption, Raman, Fourier transformed infrared (FT-IR) and electronic circular dichroism (ECD) spectroscopies, allowed to distinguish and characterize Hb adduct with sulfur atom bounded directly to the iron ion (HbFeIII-SH), and irreversibly connected to the porphyrin ring (SHb - sulfhemoglobin). Presented herein results provided also new evidence on formation of both these hemoglobin adducts inside functional erythrocytes under oxidative conditions and during sulfur-containing drug presence, what can be further translated into future physiological studies. Moreover, we found that sulfur attachment to the porphyrin ring altered Hb structure and lead to changes in protein packing inside RBCs, eventually. Interestingly, measurement of blood drop smear by Raman spectroscopy occurred the most accurate method to differentiate HbFeIII-SH and SHb, indicating potential of this technique in sulfhemoglobinemia diagnosis.
Collapse
Affiliation(s)
- Tetiana Stepanenko
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland
| | - Grzegorz Zając
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland
| | - Artur Czajkowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology (BBB), 7 Gronostajowa Str., 30-387 Krakow, Poland
| | - Wiktoria Rutkowska
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Andrzej Górecki
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology (BBB), 7 Gronostajowa Str., 30-387 Krakow, Poland
| | - Katarzyna Maria Marzec
- Lukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
4
|
Yu Q, Li M, Chen H, Xu L, Cheng J, Lin G, Liu Y, Su Z, Yang X, Li Y, Chen J, Xie J. The discovery of berberine erythrocyte-hemoglobin self-assembly delivery system: a neglected carrier underlying its pharmacokinetics. Drug Deliv 2022; 29:856-870. [PMID: 35277093 PMCID: PMC8920379 DOI: 10.1080/10717544.2022.2036870] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Berberine (BBR) has extremely low concentration and high tissue distribution. However, current pharmacokinetic studies predominantly focus on its concentration in plasma, which could hardly make a comprehensive understanding of its pharmacokinetic process. This study made a pioneering endeavor to explore the erythrocyte-hemoglobin (Hb) self-assembly system of BBR by exploring the interaction of BBR with erythrocyte and the combination of BBR with Hb. Results showed that BBR had a low bioavailability (C0 = 2.833 μg/mL via intravenous administration of 2.5 mg/kg BBR and Cmax = 0.260 μg/mL via oral administration of 400 mg/kg BBR). Besides, BBR achieved higher concentrations in erythrocytes than plasma, and the erythrocytes count and Hb content were significantly decreased after intravenous administration. Hemolysis rate indicated the BBR-erythrocyte system (with 2% erythrocytes) was relatively stable without hemolysis at the concentration of 1.00 mg/mL. And the maximum percentage of drug loading was 100% when the BBR-erythrocyte concentration was 0.185 μg/mL. Furthermore, incubation of BBR and erythrocytes resulted in internalization of the erythrocyte membrane and the formation of intracellular vacuoles. The thermodynamic parameters indicated that the binding process of bovine hemoglobin (BHB) and BBR was spontaneous. UV-vis absorption spectra, synchronous fluorescence, circular dichroism and Raman spectra collectively indicated that BBR showed strong binding affinity toward BHB and affected the molecular environment of residues like tryptophan and tyrosine in BHB, resulting in the conformational changes of its secondary and tertiary structure. Molecular docking indicated BBR interacted with Arg-141 residue of BHB via hydrogen bond with the bond length of 2.55 Å. The ΔG value of the BHB-BBR system was −31.79 kJ/mol. Molecular dynamics simulation indicated the root mean square derivation of BBR-BHB was <0.025 nm, suggestive of stable conformation. Cumulatively, there was an erythrocyte-Hb self-assembled drug delivery system after oral or intravenous administration of BBR, which conceivably gained novel insight into the discrepancy between the extremely low plasma concentration and relatively high tissue concentration of BBR.
Collapse
Affiliation(s)
- Qiuxia Yu
- The Second Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanbin Chen
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lieqiang Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
5
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Frankenfield K, Marchany-Rivera D, Flanders KG, Cruz-Balberdy A, Lopez-Garriga J, Cerda JF. Fluoride binding to characteristic heme-pocket centers: Insights into ligand stability. J Inorg Biochem 2021; 224:111578. [PMID: 34481348 PMCID: PMC8463504 DOI: 10.1016/j.jinorgbio.2021.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
The studies on the L. pectinata hemoglobins (HbI, HbII, and HbIII) are essential because of their biological roles in hydrogen sulfide transport and metabolism. Variation in the pH could also play a role in the transport of hydrogen sulfide by HbI and oxygen by HbII and HbIII, respectively. Here, fluoride binding was used to further understand the structural properties essential for the molecular mechanism of ligand stabilization as a function of pH. The data allowed us to gain insights into how the physiological roles of HbI, HbII, HbIII, adult hemoglobin (A-Hb), and horse heart myoglobin (Mb) have an impact on the heme-bound fluoride stabilization. In addition, analysis of the vibrational assignments of the met-cyano heme complexes shows varied strength interactions of the heme-bound ligand. The heme pocket composition properties differ between HbI (GlnE7 and PheB10) and HbII/HbIII (GlnE7 and TyrB10). Also, the structural GlnE7 stereo orientation changes between HbI and HbII/HbIII. In HbI, its carbonyl group orients towards the heme iron, while in HbII/HbIII, the amino group occupies this position. Therefore, in HbI, the interactions to the heme-bound fluoride ion, cyanide, and oxygen with GlnE7 via H-bonding are not probable. Still, the aromatic cage PheB10, PheCD1, and PheE11 may contribute to the observed stabilization. However, a robust H-bonding networking stabilizes HbII and HbIII, heme-bound fluoride, cyanide, and oxygen ligand with the OH and NH2 groups of TyrB10 and GlnE7, respectively. At the same time, A-Hb and Mb have moderate but similar ligand interactions controlled by their respective distal E7 histidine.
Collapse
Affiliation(s)
| | - Darya Marchany-Rivera
- Department of Chemistry/Industrial Biotechnology, P.O. Box 9000, University of Puerto Rico, Mayagüez Campus, 00681, Puerto Rico.
| | - Kayla G Flanders
- Department of Chemistry, Saint Joseph's University, 5600 City Ave., Philadelphia, PA 19131, USA.
| | | | - Juan Lopez-Garriga
- Department of Chemistry/Industrial Biotechnology, P.O. Box 9000, University of Puerto Rico, Mayagüez Campus, 00681, Puerto Rico.
| | - Jose F Cerda
- Department of Chemistry, Saint Joseph's University, 5600 City Ave., Philadelphia, PA 19131, USA.
| |
Collapse
|
7
|
Raman Spectroscopic Study of TiO 2 Nanoparticles' Effects on the Hemoglobin State in Individual Red Blood Cells. MATERIALS 2021; 14:ma14205920. [PMID: 34683512 PMCID: PMC8537815 DOI: 10.3390/ma14205920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Titanium dioxide (TiO2) is considered to be a nontoxic material and is widely used in a number of everyday products, such as sunscreen. TiO2 nanoparticles (NP) are also considered as prospective agents for photodynamic therapy and drug delivery. These applications require an understanding of the potential effects of TiO2 on the blood system and its components upon administration. In the presented work, we analyze the interaction of TiO2 nanoparticles of different crystal phases (anatase and rutile) with individual rat Red Blood Cells (RBC) and the TiO2 influence on the oxygenation state and functionality of RBC, estimated via analysis of Raman spectra of Hemoglobin (Hb) and their distribution along individual RBC. Raman spectral signals also allow localization of the TiO2 NP on the RBC. No penetration of the NP inside RBC was observed; however, both kinds of TiO2 NP adsorbed on the RBC membrane can affect the Hb state. Mechanisms involving the NP–membrane–Hb interaction, resulting in partial deoxygenation of Hb and TiO2 photothermal effect on Hb under Raman laser excitation, are suggested. The possible influence on the safety of TiO2 use in advanced medical application, especially on the safety and efficiency of photothermal therapy, is discussed.
Collapse
|