1
|
Oka Y, Inoue K. Time-resolved EPR observation of blue-light-induced radical ion pairs in a flavin-Trp dyad. Phys Chem Chem Phys 2024; 26:16444-16448. [PMID: 38808575 DOI: 10.1039/d3cp06219h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A dyad of flavin and Trp bridged by a p-phenylamide linker was synthesized as an artificial model system to investigate molecular-based magnetic-field sensors relevant to blue-light photoreceptor proteins. The results demonstrated that intramolecular electron transfer generates a radical pair, only the triplet-born one of which has a microsecond lifetime at room temperature.
Collapse
Affiliation(s)
- Yoshimi Oka
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Research Promotion Institute, Oita University, 700 Dannoharu, Oita 870-1192, Japan
- Graduate School of Advanced Science and Engineering, Chirality Research Center (CResCent), and International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan.
| | - Katsuya Inoue
- Graduate School of Advanced Science and Engineering, Chirality Research Center (CResCent), and International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan.
| |
Collapse
|
2
|
Uleanya KO, Anstöter CS, Dessent CEH. Photodissociative decay pathways of the flavin mononucleotide anion and its complexes with tryptophan and glutamic acid. Phys Chem Chem Phys 2023; 25:30697-30707. [PMID: 37934009 DOI: 10.1039/d3cp04359b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Flavin mononucleotide (FMN) is a highly versatile biological chromophore involved in a range of biochemical pathways including blue-light sensing proteins and the control of circadian rhythms. Questions exist about the effect of local amino acids on the electronic properties and photophysics of the chromophore. Using gas-phase anion laser photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (3.1-5.7 eV) and accompanying photodissociative decay pathways of the native deprotonated form of FMN, i.e. [FMN-H]- complexed with the amino acids tryptophan (TRP) and glutamic acid (GLU), i.e. [FMN-H]-·TRP and [FMN-H]-·GLU, to investigate the extent to which these amino acids perturb the electronic properties and photodynamics of the [FMN-H]- chromophore. The overall photodepletion profiles of [FMN-H]-·TRP and [FMN-H]-·GLU are similar to that of the monomer, revealing that amino acid complexation occurs without significant spectral shifting of the [FMN-H]- electronic excitations over this region. Both [FMN-H]-·TRP and [FMN-H]-·GLU are observed to decay by non-statistical photodecay pathways, although the behaviour of [FMN-H]-·TRP is closer to statistical fragmentation. Long-lived FMN excited states (triplet) are therefore relatively quenched when TRP binds to [FMN-H]-. Importantly, we find that [FMN-H]-, [FMN-H]-·TRP and [FMN-H]-·GLU all decay predominantly via electron detachment following photoexcitation of the flavin chromophore, with amino acid complexation appearing not to inhibit this decay channel. The strong propensity for electron detachment is attributed to excited-state proton transfer within FMN, with proton transfer from a ribose alcohol to the phosphate preceding electron detachment.
Collapse
Affiliation(s)
- Kelechi O Uleanya
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Cate S Anstöter
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | |
Collapse
|
3
|
Oka Y. Exclusion of Anchor-Matched Peptide Nucleic Acid from Liquid-Ordered Domains by Hybridization with Complementary Flavin-Labeled DNA. ACS OMEGA 2023; 8:1109-1113. [PMID: 36643542 PMCID: PMC9835180 DOI: 10.1021/acsomega.2c06463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Membrane-anchored proteins and their mimics, such as peptide nucleic acids (PNAs), are known to partition preferentially into either lipid raft/liquid-ordered (lo) domains or into non-raft/liquid-disordered (ld) domains, depending on their lipophilic anchors. Here, anchor-matched PNA was demonstrated to be excluded from the lo microdomains of giant unilamellar vesicles by hybridization with the complementary flavin-labeled DNA. As shown in control experiments using Alexa Fluor 488-labeled DNA, which showed that the preferential partitioning was the lo domain, the domain distribution of PNA was not only dependent on the lipophilic anchor but also on the structure of the hybridized DNA or PNA pair. In such systems, the main factors that influence changes in the domain selectivity of the probes are most likely to also be interactivity (i.e., steric bulkiness), hydrophilicity, and self-assembling ability. These findings may have the potential to contribute to the elucidation of membrane-active peptides, the method of their activation, and their applications in medicine such as antimicrobial use, especially with regard to their actions at the interface between the lo and ld domains in cells.
Collapse
|
4
|
Chen X, Sukhanov AA, Taddei M, Dick B, Zhao J, Voronkova VK, Di Donato M. Charge Separation/Recombination, Intersystem Crossing, and Unusually Slow Intramolecular Triplet-Triplet Energy Transfer in Naphthalenediimide-Anthracene Compact Energy Donor-Acceptor Dyads. J Phys Chem Lett 2022; 13:8740-8748. [PMID: 36098552 DOI: 10.1021/acs.jpclett.2c02118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three anthracene (An)-naphthalenediimide (NDI) compact electron donor-acceptor dyads were prepared. Femtosecond transient absorption (fs-TA) spectra show fast charge separation (ca. 0.9-1.7 ps) and relatively slow charge recombination (ca. 8-565 ps) upon photoexcitation; moreover, the 3An state was observed for 9-An-NDI, whereas the final state is 3NDI for both 9-An-Ph-NDI and 2-An-Ph-NDI, which have an intervening phenyl linker between the An and NDI units. Nanosecond transient absorption (ns-TA) spectra indicate that the lowest triplet state of all the dyads is 3An, with triplet lifetimes of 139-354 μs. An unusually slow intramolecular triplet-triplet energy transfer (TTET) was observed for 9-An-Ph-NDI and 2-An-Ph-NDI (32-85 ns). Time-resolved electron paramagnetic resonance (TREPR) spectroscopy confirms that the intersystem crossing (ISC) mechanism is spin orbit charge transfer ISC (SOCT-ISC) for all the dyads; for 9-An-NDI, only the 3An state was observed, while for the other two dyads, both 3NDI and 3An states were observed, with their relative population changing with increasing delay time, which supports TTET.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russia
| | - Maria Taddei
- LENS (European Laboratory for Non-Linear Spectroscopy), Via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | - Bernhard Dick
- Lehrstuhl für Physikalische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Regensburg 93053, Germany
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan 420029, Russia
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), Via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, via Madonna del Piano 10-12, 50019 Sesto Fiorentino, Italy
| |
Collapse
|