1
|
Cagliani R, Forni D, Mozzi A, Fuchs R, Hagai T, Sironi M. Evolutionary analysis of ZAP and its cofactors identifies intrinsically disordered regions as central elements in host-pathogen interactions. Comput Struct Biotechnol J 2024; 23:3143-3154. [PMID: 39234301 PMCID: PMC11372611 DOI: 10.1016/j.csbj.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is an innate immunity sensor of non-self nucleic acids. Its antiviral activity is exerted through the physical interaction with different cofactors, including TRIM25, Riplet and KHNYN. Cellular proteins that interact with infectious agents are expected to be engaged in genetic conflicts that often result in their rapid evolution. To test this possibility and to identify the regions most strongly targeted by natural selection, we applied in silico molecular evolution tools to analyze the evolutionary history of ZAP and cofactors in four mammalian groups. We report evidence of positive selection in all genes and in most mammalian groups. On average, the intrinsically disordered regions (IDRs) embedded in the four proteins evolve significantly faster than folded domains and most positively selected sites fall within IDRs. In ZAP, the PARP domain also shows abundant signals of selection, and independent evolution in different mammalian groups suggests modulation of its ADP-ribose binding ability. Detailed analyses of the biophysical properties of IDRs revealed that chain compaction and conformational entropy are conserved across mammals. The IDRs in ZAP and KHNYN are particularly compact, indicating that they may promote phase separation (PS). In line with this hypothesis, we predicted several PS-promoting regions in ZAP and KHNYN, as well as in TRIM25. Positively selected sites are abundant in these regions, suggesting that PS may be important for the antiviral functions of these proteins and the evolutionary arms race with viruses. Our data shed light into the evolution of ZAP and cofactors and indicate that IDRs represent central elements in host-pathogen interactions.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Alessandra Mozzi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| | - Rotem Fuchs
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Computational Biology Unit, Bosisio Parini 23842, Italy
| |
Collapse
|
2
|
Bayer LV, Milano SN, Bratu DP. The mRNA dynamics underpinning translational control mechanisms of Drosophila melanogaster oogenesis. Biochem Soc Trans 2024; 52:2087-2099. [PMID: 39263986 PMCID: PMC11555706 DOI: 10.1042/bst20231293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development. Initial studies on translational control necessitated fixed tissue, but the last 30 years have sparked innovative live-cell studies in several cell types to deliver a far more nuanced picture of how mRNA-protein dynamics exert translational control. In this review, we weave together the events that underpin mRNA processes and showcase the pivotal studies that revealed how a multitude of protein factors engage with a transcript. We highlight a mRNA's ability to act as a 'super scaffold' to facilitate molecular condensate formation and further moderate translational control. We focus on the Drosophila melanogaster germline due to the extensive post-transcriptional regulation occurring during early oogenesis. The complexity of the spatio-temporal expression of maternal transcripts in egg chambers allows for the exploration of a wide range of mechanisms that are crucial to the life cycle of mRNAs.
Collapse
Affiliation(s)
- Livia V. Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Samantha N. Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Program in Molecular, Cellular and Developmental Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Diana P. Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Program in Molecular, Cellular and Developmental Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
3
|
Zheng H, Zhang H. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates. Bioessays 2024; 46:e2300203. [PMID: 38175843 DOI: 10.1002/bies.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.
Collapse
Affiliation(s)
- Hui Zheng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
4
|
Lin AZ, Ruff KM, Dar F, Jalihal A, King MR, Lalmansingh JM, Posey AE, Erkamp NA, Seim I, Gladfelter AS, Pappu RV. Dynamical control enables the formation of demixed biomolecular condensates. Nat Commun 2023; 14:7678. [PMID: 37996438 PMCID: PMC10667521 DOI: 10.1038/s41467-023-43489-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Cellular matter can be organized into compositionally distinct biomolecular condensates. For example, in Ashbya gossypii, the RNA-binding protein Whi3 forms distinct condensates with different RNA molecules. Using criteria derived from a physical framework for explaining how compositionally distinct condensates can form spontaneously via thermodynamic considerations, we find that condensates in vitro form mainly via heterotypic interactions in binary mixtures of Whi3 and RNA. However, within these condensates, RNA molecules become dynamically arrested. As a result, in ternary systems, simultaneous additions of Whi3 and pairs of distinct RNA molecules lead to well-mixed condensates, whereas delayed addition of an RNA component results in compositional distinctness. Therefore, compositional identities of condensates can be achieved via dynamical control, being driven, at least partially, by the dynamical arrest of RNA molecules. Finally, we show that synchronizing the production of different RNAs leads to more well-mixed, as opposed to compositionally distinct condensates in vivo.
Collapse
Affiliation(s)
- Andrew Z Lin
- Division of Biology and Biomedical Sciences, Plant and Microbial Biosciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ameya Jalihal
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Matthew R King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ammon E Posey
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nadia A Erkamp
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ian Seim
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University, Durham, NC, 27708, USA.
| | - Rohit V Pappu
- Division of Biology and Biomedical Sciences, Plant and Microbial Biosciences, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
5
|
Blazquez S, Sanchez‐Burgos I, Ramirez J, Higginbotham T, Conde MM, Collepardo‐Guevara R, Tejedor AR, Espinosa JR. Location and Concentration of Aromatic-Rich Segments Dictates the Percolating Inter-Molecular Network and Viscoelastic Properties of Ageing Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207742. [PMID: 37386790 PMCID: PMC10477902 DOI: 10.1002/advs.202207742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/03/2023] [Indexed: 07/01/2023]
Abstract
Maturation of functional liquid-like biomolecular condensates into solid-like aggregates has been linked to the onset of several neurodegenerative disorders. Low-complexity aromatic-rich kinked segments (LARKS) contained in numerous RNA-binding proteins can promote aggregation by forming inter-protein β-sheet fibrils that accumulate over time and ultimately drive the liquid-to-solid transition of the condensates. Here, atomistic molecular dynamics simulations are combined with sequence-dependent coarse-grained models of various resolutions to investigate the role of LARKS abundance and position within the amino acid sequence in the maturation of condensates. Remarkably, proteins with tail-located LARKS display much higher viscosity over time than those in which the LARKS are placed toward the center. Yet, at very long timescales, proteins with a single LARKS-independently of its location-can still relax and form high viscous liquid condensates. However, phase-separated condensates of proteins containing two or more LARKS become kinetically trapped due to the formation of percolated β-sheet networks that display gel-like behavior. Furthermore, as a work case example, they demonstrate how shifting the location of the LARKS-containing low-complexity domain of FUS protein toward its center effectively precludes the accumulation of β-sheet fibrils in FUS-RNA condensates, maintaining functional liquid-like behavior without ageing.
Collapse
Affiliation(s)
- Samuel Blazquez
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Ignacio Sanchez‐Burgos
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Jorge Ramirez
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Tim Higginbotham
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Maria M. Conde
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Rosana Collepardo‐Guevara
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of GeneticsUniversity of CambridgeCambridgeCB2 3EH, UK
| | - Andres R. Tejedor
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Jorge R. Espinosa
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
6
|
Sanchez-Burgos I, Herriott L, Collepardo-Guevara R, Espinosa JR. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Biophys J 2023; 122:2973-2987. [PMID: 36883003 PMCID: PMC10398262 DOI: 10.1016/j.bpj.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA-protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition-increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA-protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA-protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA-protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate's surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Lara Herriott
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Departament of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Zeng X, Pappu RV. Developments in describing equilibrium phase transitions of multivalent associative macromolecules. Curr Opin Struct Biol 2023; 79:102540. [PMID: 36804705 PMCID: PMC10732938 DOI: 10.1016/j.sbi.2023.102540] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Biomolecular condensates are distinct cellular bodies that form and dissolve reversibly to organize cellular matter and biochemical reactions in space and time. Condensates are thought to form and dissolve under the influence of spontaneous and driven phase transitions of multivalent associative macromolecules. These include phase separation, which is defined by segregation of macromolecules from the solvent or from one another, and percolation or gelation, which is an inclusive networking transition driven by reversible associations among multivalent macromolecules. Considerable progress has been made to model sequence-specific phase transitions, especially for intrinsically disordered proteins. Here, we summarize the state-of-the-art of theories and computations aimed at understanding and modeling sequence-specific, thermodynamically controlled, coupled associative and segregative phase transitions of archetypal multivalent macromolecules.
Collapse
Affiliation(s)
- Xiangze Zeng
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA. https://twitter.com/@xiangzezeng
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
8
|
Lin AZ, Ruff KM, Jalihal A, Dar F, King MR, Lalmansingh JM, Posey AE, Seim I, Gladfelter AS, Pappu RV. Dynamical control enables the formation of demixed biomolecular condensates. RESEARCH SQUARE 2023:rs.3.rs-2440278. [PMID: 36798397 PMCID: PMC9934772 DOI: 10.21203/rs.3.rs-2440278/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Macromolecular phase separation underlies the regulated formation and dissolution of biomolecular condensates. What is unclear is how condensates of distinct and shared macromolecular compositions form and coexist within cellular milieus. Here, we use theory and computation to establish thermodynamic criteria that must be satisfied to achieve compositionally distinct condensates. We applied these criteria to an archetypal ribonucleoprotein condensate and discovered that demixing into distinct protein-RNA condensates cannot be the result of purely thermodynamic considerations. Instead, demixed, compositionally distinct condensates arise due to asynchronies in timescales that emerge from differences in long-lived protein-RNA and RNA-RNA crosslinks. This type of dynamical control is also found to be active in live cells whereby asynchronous production of molecules is required for realizing demixed protein-RNA condensates. We find that interactions that exert dynamical control provide a versatile and generalizable way to influence the compositions of coexisting condensates in live cells.
Collapse
Affiliation(s)
- Andrew Z Lin
- Division of Biology and Biomedical Sciences, Plant and Microbial Biosciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ameya Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Matthew R King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jared M Lalmansingh
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ammon E Posey
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ian Seim
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
9
|
Lin AZ, Ruff KM, Jalihal A, Dar F, King MR, Lalmansingh JM, Posey AE, Seim I, Gladfelter AS, Pappu RV. Dynamical control enables the formation of demixed biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522702. [PMID: 36711465 PMCID: PMC9881950 DOI: 10.1101/2023.01.04.522702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Macromolecular phase separation underlies the regulated formation and dissolution of biomolecular condensates. What is unclear is how condensates of distinct and shared macromolecular compositions form and coexist within cellular milieus. Here, we use theory and computation to establish thermodynamic criteria that must be satisfied to achieve compositionally distinct condensates. We applied these criteria to an archetypal ribonucleoprotein condensate and discovered that demixing into distinct protein-RNA condensates cannot be the result of purely thermodynamic considerations. Instead, demixed, compositionally distinct condensates arise due to asynchronies in timescales that emerge from differences in long-lived protein-RNA and RNA-RNA crosslinks. This type of dynamical control is also found to be active in live cells whereby asynchronous production of molecules is required for realizing demixed protein-RNA condensates. We find that interactions that exert dynamical control provide a versatile and generalizable way to influence the compositions of coexisting condensates in live cells.
Collapse
|
10
|
Different states and the associated fates of biomolecular condensates. Essays Biochem 2022; 66:849-862. [PMID: 36350032 DOI: 10.1042/ebc20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Biomolecular condensates are functional assemblies, which can enrich intrinsically disordered proteins (IDPs) and/or RNAs at concentrations that are orders of magnitude higher than the bulk. In their native functional state, these structures can exist in multiple physical states including liquid-droplet phase, hydrogels, and solid assemblies. On the other hand, an aberrant transition between these physical states can result in loss-of-function or a gain-of-toxic-function. A prime example of such an aberrant transition is droplet aging—a phenomenon where some condensates may progressively transition into less dynamic material states at biologically relevant timescales. In this essay, we review structural and viscoelastic roots of aberrant liquid–solid transitions. Also, we highlight the different checkpoints and experimentally tunable handles, both active (ATP-dependent enzymes, post-translational modifications) and passive (colocalization of RNA molecules), that could alter the material state of assemblies.
Collapse
|
11
|
Tejedor AR, Sanchez-Burgos I, Estevez-Espinosa M, Garaizar A, Collepardo-Guevara R, Ramirez J, Espinosa JR. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat Commun 2022; 13:5717. [PMID: 36175408 PMCID: PMC9522849 DOI: 10.1038/s41467-022-32874-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Biomolecular condensates, some of which are liquid-like during health, can age over time becoming gel-like pathological systems. One potential source of loss of liquid-like properties during ageing of RNA-binding protein condensates is the progressive formation of inter-protein β-sheets. To bridge microscopic understanding between accumulation of inter-protein β-sheets over time and the modulation of FUS and hnRNPA1 condensate viscoelasticity, we develop a multiscale simulation approach. Our method integrates atomistic simulations with sequence-dependent coarse-grained modelling of condensates that exhibit accumulation of inter-protein β-sheets over time. We reveal that inter-protein β-sheets notably increase condensate viscosity but does not transform the phase diagrams. Strikingly, the network of molecular connections within condensates is drastically altered, culminating in gelation when the network of strong β-sheets fully percolates. However, high concentrations of RNA decelerate the emergence of inter-protein β-sheets. Our study uncovers molecular and kinetic factors explaining how the accumulation of inter-protein β-sheets can trigger liquid-to-solid transitions in condensates, and suggests a potential mechanism to slow such transitions down. In this work the authors propose a multiscale computational approach, integrating atomistic and coarse-grained models simulations, to study the thermodynamic and kinetic factors playing a major role in the liquid-to-solid transition of biomolecular condensates. It is revealed how the gradual accumulation of inter-protein β-sheets increases the viscosity of functional liquid-like condensates, transforming them into gel-like pathological aggregates, and it is also shown how high concentrations of RNA can decelerate such transition.
Collapse
Affiliation(s)
- Andres R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.,Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Maria Estevez-Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jorge Ramirez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
12
|
Shillcock JC, Lagisquet C, Alexandre J, Vuillon L, Ipsen JH. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules. SOFT MATTER 2022; 18:6674-6693. [PMID: 36004748 DOI: 10.1039/d2sm00387b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomolecular condensates play numerous roles in cells by selectively concentrating client proteins while excluding others. These functions are likely to be sensitive to the spatial organization of the scaffold proteins forming the condensate. We use coarse-grained molecular simulations to show that model intrinsically-disordered proteins phase separate into a heterogeneous, structured fluid characterized by a well-defined length scale. The proteins are modelled as semi-flexible polymers with punctate, multifunctional binding sites in good solvent conditions. Their dense phase is highly solvated with a spatial structure that is more sensitive to the separation of the binding sites than their affinity. We introduce graph theoretic measures to quantify their heterogeneity, and find that it increases with increasing binding site number, and exhibits multi-timescale dynamics. The model proteins also swell on passing from the dilute solution to the dense phase. The simulations predict that the structure of the dense phase is modulated by the location and affinity of binding sites distant from the termini of the proteins, while sites near the termini more strongly affect its phase behaviour. The relations uncovered between the arrangement of weak interaction sites on disordered proteins and the material properties of their dense phase can be experimentally tested to give insight into the biophysical properties, pathological effects, and rational design of biomolecular condensates.
Collapse
Affiliation(s)
- Julian C Shillcock
- Blue Brain Project and Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Clément Lagisquet
- LAMA, Univ. Savoie Mont Blanc, CNRS, LAMA, 73376 Le Bourget du Lac, France.
| | - Jérémy Alexandre
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Vuillon
- LAMA, Univ. Savoie Mont Blanc, CNRS, LAMA, 73376 Le Bourget du Lac, France.
| | - John H Ipsen
- Dept. of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
13
|
Ancona M, Brackley CA. Simulating the chromatin mediated phase separation of model proteins with multiple domains. Biophys J 2022; 121:2600-2612. [DOI: 10.1016/j.bpj.2022.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
|
14
|
Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Comput Biol 2022; 18:e1009810. [PMID: 35108264 PMCID: PMC8896709 DOI: 10.1371/journal.pcbi.1009810] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/04/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jerelle A. Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
15
|
Pantoja CF, Zweckstetter M, Rezaei-Ghaleh N. Dynamical Component Exchange in a Model Phase Separating System: an NMR-based Approach. Phys Chem Chem Phys 2022; 24:6169-6175. [DOI: 10.1039/d2cp00042c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomolecular phase separation plays a key role in spatial organization of cellular activities. Dynamic formation and rapid component exchange between phase separated cellular bodies and their environment are crucial for...
Collapse
|