1
|
Hinz Y, Böhmer R. Interplay of ethaline and water dynamics in a hydrated eutectic solvent: Deuteron and oxygen magnetic resonance studies of aqueous ethaline. J Chem Phys 2024; 161:234504. [PMID: 39698859 DOI: 10.1063/5.0244255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
For many technological processes, the impact of water addition on the properties of deep eutectic solvents is of central importance. In this context, the impact of hydration on the reorientational dynamics of the deep eutectic solvent (DES) ethaline, a 2:1 molar mixture of ethylene glycol and choline chloride, was studied. Its overall response was explored by means of shear mechanical rheology. To achieve component-selective insights into the dynamics of this material, isotope-edited deuteron and oxygen spin-lattice and spin-spin relaxometry, as well as stimulated-echo spectroscopy, were applied and yielded motional correlation times from above room temperature down to the highly viscous regime. For all temperatures, the cholinium anion was found to reorient about two times slower than ethylene glycol, while the water and the ethylene glycol molecules display very similar mobilities. While hydration enhances the component dynamics with respect to that of dry ethaline, the present findings reveal that it does not detectably increase the heterogeneity of the solvent. Merely, the time scale similarity that is found for the hydrogen bond donor and the water molecules over a particularly wide temperature range impressively attests to the stability of the native solvent structure in the "water-in-DES" regime.
Collapse
Affiliation(s)
- Yannik Hinz
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
2
|
Aguilar N, Benito C, Martel-Martín S, Gutiérrez A, Rozas S, Marcos PA, Bol-Arreba A, Atilhan M, Aparicio S. Insights into Carvone: Fatty Acid Hydrophobic NADES for Alkane Solubilization. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:23633-23653. [PMID: 39720702 PMCID: PMC11664508 DOI: 10.1021/acs.energyfuels.4c03623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 12/26/2024]
Abstract
The urge to adopt cleaner technologies drives the search for novel and sustainable materials such as Hydrophobic Natural Deep Eutectic Solvents (HNADESs), a new class of green solvents characterized by their low toxicity, biodegradability, and tunable properties, aiming to be applied in various fields for handling non-polar substances. In this work, the solubilization of hydrocarbons in type V HNADESs (non-ionic organic molecules) formed by mixing carvone, a natural monoterpenoid, with organic acids (hexanoic to decanoic acids) is examined by applying both experimental and theoretical approaches. The synthesis and physicochemical characterization of different HNADESs allowed us to tailor their properties, aiming for optimal interactions with desired hydrocarbons. The solubilization of hydrocarbons in CAR:C10AC (1:1) HNADES is evaluated in terms of HNADES content, temperature, and the structure of the hydrocarbon itself (C6, C10, and C14 being the selected ones). To gain deeper insights into the underlying mechanisms of interactions between the solvents and the alkanes, a comprehensive multiscale computational study was carried out to analyze the nature of the interactions, the changes upon formation of HNADESs and hydrocarbon solubilization in the fluid's nanostructure, and the possible toxicological effects of the solvents. The findings hold the potential to significantly impact the realm of hydrocarbon exploration and utilization.
Collapse
Affiliation(s)
- Nuria Aguilar
- Department
of Chemistry, University of Burgos, 09001 Burgos, Spain
| | - Cristina Benito
- Department
of Chemistry, University of Burgos, 09001 Burgos, Spain
| | - Sonia Martel-Martín
- International
Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, 09001 Burgos, Spain
| | | | - Sara Rozas
- Department
of Chemistry, University of Burgos, 09001 Burgos, Spain
| | - Pedro A. Marcos
- Department
of Physics, University of Burgos, 09001 Burgos, Spain
| | - Alfredo Bol-Arreba
- International
Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, 09001 Burgos, Spain
- Department
of Physics, University of Burgos, 09001 Burgos, Spain
| | - Mert Atilhan
- Department
of Chemical and Paper Engineering, Western
Michigan University, Kalamazoo, Michigan 49008-5462, United States
| | - Santiago Aparicio
- Department
of Chemistry, University of Burgos, 09001 Burgos, Spain
- International
Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
3
|
Buzolic JJ, Tiecco M, Atkin R, Li H. Tuning the nanostructure and tribological properties of a non-ionic deep eutectic solvent with water addition. J Colloid Interface Sci 2024; 683:722-730. [PMID: 39706091 DOI: 10.1016/j.jcis.2024.12.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
HYPOTHESIS The addition of water to a non-ionic N-oxide deep eutectic solvent(DES) composed of phenylacetic acid (PhAA) and N-dodecylmorpholine-N-oxide(MO-12) in a 1:1 M ratio(PhAA/MO-12) will promote interfacial nanostructure formation due to increased proton transfer and solvophobic interactions, leading to reduced friction. EXPERIMENTS The interfacial structure and friction of PhAA/MO-12 with water content up to 41.9 wt% were investigated at mica surfaces. Atomic force microscopy(AFM) was used to measure normal force-separation profiles, lateral images, and nanoscale friction. FINDINGS Conductivity increases over twentyfold with the addition of 23.6 wt% water. AFM force curves reveal that increasing water content in PhAA/MO-12 leads to a more pronounced interfacial structure with steps extending further into the bulk. High-resolution near-surface images show a well-defined sponge-like nanostructure at 23.6 wt% water, which is absent in the neat DES. The enhanced nanostructure is attributed to increased proton transfer from PhAA to MO-12 and segregation of polar and apolar domains driven by water-strengthened solvophobic interactions. Friction reduces up to 72 % for ≥7.0 wt% water compared to the neat DES, due to a more robust boundary layer facilitated by water.
Collapse
Affiliation(s)
- Joshua J Buzolic
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Matteo Tiecco
- School of Pharmacy, ChIP Research Center, University of Camerino, Camerino, MC 62032, Italy
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
4
|
Sil A, Sangeeta, Poonia V, Das S, Guchhait B. Molecular dynamics insights into the dynamical behavior of structurally modified water in aqueous deep eutectic solvents (ADES). J Chem Phys 2024; 161:164501. [PMID: 39435833 DOI: 10.1063/5.0223828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Recent studies have demonstrated that the presence of water in deep eutectic solvents (DESs) significantly affects their dynamics, structure, and physical properties. Although the structural changes due to the addition of water are well understood, the microscopic dynamics of these changes have been rarely studied. Here, we performed molecular dynamics simulation of 30% (v/v) (∼0.57 molar fraction) water mixture of DES containing CH3CONH2 and NaSCN/KSCN at various salt fractions to understand the microscopic structure and dynamics of water. The simulated results reveal a heterogeneous environment for water molecules in aqueous DES (ADES), which is influenced by the nature of the cation. The diffusion coefficients of water in ADESs are significantly lower than that in neat water and concentrated aqueous NaSCN/KSCN solution. When Na+ ions are replaced by K+ ions in the ADES system, the diffusion coefficient increases, which is consistent with the measured nuclear magnetic resonance data. Self-dynamic structure factor for water and other simulated dynamic quantities, such as reorientation, hydrogen-bond, and residence time correlation functions, show markedly slower dynamics inside ADES than in the neat water and aqueous salt solution. Moreover, these dynamics become faster when Na+ ions in ADES are replaced by K+ ions. The results suggest that the structural environment of water in Na+-rich ADES is rigid due to the presence of cation-bound water and geometrically constrained water. The medium becomes less rigid as the KSCN fraction increases due to the relatively weaker interaction of K+ ions with water than Na+ ions, which accelerates the dynamical processes.
Collapse
Affiliation(s)
- Arnab Sil
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Sangeeta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Vishnu Poonia
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Suman Das
- Department of Chemistry, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
5
|
Abbas UL, Zhang Y, Tapia J, Md S, Chen J, Shi J, Shao Q. Machine-Learning-Assisted Design of Deep Eutectic Solvents Based on Uncovered Hydrogen Bond Patterns. ENGINEERING (BEIJING, CHINA) 2024; 39:74-83. [PMID: 39323971 PMCID: PMC11423819 DOI: 10.1016/j.eng.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Non-ionic deep eutectic solvents (DESs) are non-ionic designer solvents with various applications in catalysis, extraction, carbon capture, and pharmaceuticals. However, discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation. The search for DES relies heavily on intuition or trial-and-error processes, leading to low success rates or missed opportunities. Recognizing that hydrogen bonds (HBs) play a central role in DES formation, we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning (ML) models to discover new DES systems. We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics (MD) simulation trajectories. The analysis reveals that DES systems have two unique features compared to non-DES systems: The DESs have ① more imbalance between the numbers of the two intra-component HBs and ② more and stronger inter-component HBs. Based on these results, we develop 30 ML models using ten algorithms and three types of HB-based descriptors. The model performance is first benchmarked using the average and minimal receiver operating characteristic (ROC)-area under the curve (AUC) values. We also analyze the importance of individual features in the models, and the results are consistent with the simulation-based statistical analysis. Finally, we validate the models using the experimental data of 34 systems. The extra trees forest model outperforms the other models in the validation, with an ROC-AUC of 0.88. Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.
Collapse
Affiliation(s)
- Usman L. Abbas
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Yuxuan Zhang
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Joseph Tapia
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Selim Md
- Institute for Biomedical Informatics, Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
| | - Jin Chen
- Institute for Biomedical Informatics, Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA
| | - Jian Shi
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
6
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
7
|
Ayres LB, Gomez FJV, Silva MF, Linton JR, Garcia CD. Predicting the formation of NADES using a transformer-based model. Sci Rep 2024; 14:2715. [PMID: 38388549 PMCID: PMC10883925 DOI: 10.1038/s41598-022-27106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/26/2022] [Indexed: 02/24/2024] Open
Abstract
The application of natural deep eutectic solvents (NADES) in the pharmaceutical, agricultural, and food industries represents one of the fastest growing fields of green chemistry, as these mixtures can potentially replace traditional organic solvents. These advances are, however, limited by the development of new NADES which is today, almost exclusively empirically driven and often derivative from known mixtures. To overcome this limitation, we propose the use of a transformer-based machine learning approach. Here, the transformer-based neural network model was first pre-trained to recognize chemical patterns from SMILES representations (unlabeled general chemical data) and then fine-tuned to recognize the patterns in strings that lead to the formation of either stable NADES or simple mixtures of compounds not leading to the formation of stable NADES (binary classification). Because this strategy was adapted from language learning, it allows the use of relatively small datasets and relatively low computational resources. The resulting algorithm is capable of predicting the formation of multiple new stable eutectic mixtures (n = 337) from a general database of natural compounds. More importantly, the system is also able to predict the components and molar ratios needed to render NADES with new molecules (not present in the training database), an aspect that was validated using previously reported NADES as well as by developing multiple novel solvents containing ibuprofen. We believe this strategy has the potential to transform the screening process for NADES as well as the pharmaceutical industry, streamlining the use of bioactive compounds as functional components of liquid formulations, rather than simple solutes.
Collapse
Affiliation(s)
- Lucas B Ayres
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
| | - Federico J V Gomez
- Facultad de Ciencias Agrarias, Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Maria Fernanda Silva
- Facultad de Ciencias Agrarias, Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Jeb R Linton
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA
- IBM Cloud, Armonk, NY, 10504, USA
| | - Carlos D Garcia
- Department of Chemistry, Clemson University, 211 S. Palmetto Blvd, Clemson, SC, 29634, USA.
| |
Collapse
|
8
|
Cherniakova M, Varchenko V, Belikov K. Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction. CHEM REC 2024; 24:e202300267. [PMID: 37861277 DOI: 10.1002/tcr.202300267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
In the last 10 years the interest in deep eutectic solvents (DESs) as a new class of green solvents has considerably increased. The emergence of numerous of hydrophobic DESs has stimulated intensive research into their application in extraction technologies, including sample preparation. As the properties of such systems are highly dependent on the properties of their components (hydrogen bond donors and acceptors) and can be finely tuned, DESs can be successfully used for the extraction of both metal ions and organic substances, including biomolecules. Despite the rapidly increasing number of publications on the use of DESs as an extraction medium, including review articles, information on the extraction properties of DESs in terms of their chemical composition has not yet been summarized. This review covers available literature data on the physicochemical properties of menthol-based eutectic solvents and the results of their practical application as an extraction medium. Also, the appropriateness of using the term "DES" for all mixtures with melting points lower than the melting points of their components is discussed.
Collapse
Affiliation(s)
- Marharyta Cherniakova
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Victoria Varchenko
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
| | - Konstantin Belikov
- Department of Analytical Chemistry, State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072, Kharkiv, Ukraine
- School of Chemistry, V.N. Karazin Kharkiv National University, 6 Svobody sq., 61022, Kharkiv, Ukraine
| |
Collapse
|
9
|
Ferreira C, Sarraguça M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals (Basel) 2024; 17:124. [PMID: 38256957 PMCID: PMC10820243 DOI: 10.3390/ph17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The extraction of bioactive compounds of pharmaceutical interest from natural sources has been significantly explored in recent decades. However, the extraction techniques used were not very efficient in terms of time and energy consumption; additionally, the solvents used for the extraction were harmful for the environment. To improve the environmental impact of the extractions and at the same time increase the extraction yields, several new extraction techniques were developed. Among the most used ones are ultrasound-assisted extraction and microwave-assisted extraction. These extraction techniques increased the yield and selectivity of the extraction in a smaller amount of time with a decrease in energy consumption. Nevertheless, a high volume of organic solvents was still used for the extraction, causing a subsequent environmental problem. Neoteric solvents appeared as green alternatives to organic solvents. Among the neoteric solvents, deep eutectic solvents were evidenced to be one of the best alternatives to organic solvents due to their intrinsic characteristics. These solvents are considered green solvents because they are made up of natural compounds such as sugars, amino acids, and carboxylic acids having low toxicity and high degradability. In addition, they are simple to prepare, with an atomic economy of 100%, with attractive physicochemical properties. Furthermore, the huge number of compounds that can be used to synthesize these solvents make them very useful in the extraction of bioactive compounds since they can be tailored to be selective towards a specific component or class of components. The main aim of this paper is to give a comprehensive review which describes the main properties, characteristics, and production methods of deep eutectic solvents as well as its application to extract from natural sources bioactive compounds with pharmaceutical interest. Additionally, an overview of the more recent and sustainable extraction techniques is also given.
Collapse
Affiliation(s)
| | - Mafalda Sarraguça
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, Porto University, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| |
Collapse
|
10
|
Barani Pour S, Dabbagh Hosseini Pour M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Pazuki G. Effect of water addition on caprylic acid: Quaternary ammonium salts (QAS) deep eutectic solvents: Characterization of their structural and dynamical properties. J Mol Graph Model 2023; 125:108561. [PMID: 37660617 DOI: 10.1016/j.jmgm.2023.108561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 09/05/2023]
Abstract
Physicochemical properties of the binary mixtures based on Caprylic acid: Quaternary ammonium salts (QAS) (7:3 mol ratio) are investigated using MD simulations. Considering the hydrophobic character of eutectic solvents based on long-chain fatty acids, the stability of the binary mixtures was investigated in the adjacent water. In order to investigate the effect of water on intermolecular interactions in binary mixtures, the structural properties of the binary mixtures in the pure state and adjacent to water were investigated at 310 K. Assessed structural properties include the combined distribution functions (CDFs), the radial distribution functions (RDFs), the angular distribution functions (ADFs), and the Hydrogen bonding network between HBA and HBD and Spatial distribution functions (SDF). We aimed to represent the structural stability of eutectic solvents based on Caprylic acid and Quaternary ammonium salts (QAS) as a function of the alkyl chain length of cations, the evidence was found for the interaction between the chloride anion leads to the transition of HBA to the water-rich phase. The alkyl chain length of cations of Quaternary ammonium salts shows the stability of eutectic solvents in the adjacent water.
Collapse
Affiliation(s)
- Samaneh Barani Pour
- Molecular Science and Engineering Research Group (MSERG), Molecular Simulation Lab, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mitra Dabbagh Hosseini Pour
- Molecular Science and Engineering Research Group (MSERG), Molecular Simulation Lab, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Science and Engineering Research Group (MSERG), Department of Chemistry, Molecular Simulation Lab, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Science and Engineering Research Group (MSERG, Department of Physics, Molecular Simulation Lab, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | | | - Gholamreza Pazuki
- Molecular Science and Engineering Research Group (MSERG, Department of Physics, Molecular Simulation Lab, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
11
|
Wong LN, Imberti S, Warr GG, Atkin R. Bulk nanostructure of a deep eutectic solvent with an amphiphilic hydrogen bond donor. Phys Chem Chem Phys 2023; 25:31068-31076. [PMID: 37946570 DOI: 10.1039/d3cp03587e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Neutron diffraction with empirical potential structure refinement (EPSR) show the deep eutectic solvent (DES) 1 : 4 choline chloride : butyric acid is amphiphilically nanostructured. Nanostructure results from solvophobic interactions between the alkyl chains of the butyric acid hydrogen bond donor (HBD) and is retained with addition of 10 wt% water. EPSR fits to the diffraction data is used to produce a three-dimensional model of the liquid which is interrogated to reveal the interactions leading to the solvophobic effect, and therefore nanostructure, in this DES at atomic resolution. The model shows electrostatic and hydrogen bond interactions cause the cation, anion and HBD acid group to cluster into a polar domain, from which the acid alkyl chains are solvophobically excluded into theapolar domain. The polar and apolar domains percolate through the liquid in a bicontinuous sponge-like structure. The effect of adding 10 wt% water is probed, revealing that water molecules are sequestered around the cation and anion within the polar domain, while the neat bulk structure is retained. Alkyl chain packing in the apolar domain becomes slightly better-defined indicating water marginally strengthens solvophobic segregation. These findings reveal bulk self-assembled nanostructure can be produced in DESs via an amphiphilic HBD.
Collapse
Affiliation(s)
- Lucas N Wong
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia.
| | - Silvia Imberti
- STFC, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia.
| |
Collapse
|
12
|
Xia H, Lv C, Lu Y, Zeng C, Qin S, Shi M. Natural deep eutectic ready to use extract of astilbin: Super high in vitro bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics. Food Res Int 2023; 173:113368. [PMID: 37803707 DOI: 10.1016/j.foodres.2023.113368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 10/08/2023]
Abstract
Astilbin, a natural flavonoid, possesses multiple functionalities, while the poor bioavailability seriously restricts its application in functional food and medicine. Therefore, in this study, a natural deep eutectic solvent (NaDES) with choline chloride: lactic acid (CHCL-LAC) is selected to deliver astilbin by evaluating the bioaccessibility and antioxidant capacity during in vitro gastrointestinal digestion, and the inhibitory effect with underlying mechanism of astilbin-CHCL-LAC against α-amylase/α-glucosidase were investigated. The CHCL-LAC showed significant high astilbin bioaccessibility (84.1% bioaccessible) and DPPH and ORAC antioxidant capacity with 75.7% and 57.7% respectively after 3 h in vitro digestion, which may be attributed by hydrogen bond based supramolecule formed between astilbin and CHCL-LAC. Moreover, significant inhibitions of astilbin-CHCL-LAC on α-amylase (IC50 of 0.67 g/L) and α-glucosidase (IC50 of 0.64 g/L) were observed in mixed competitive and non-competitive manners. The dominant binding force between enzymes and astilbin were the hydrogen and hydrophobic interaction. This is the first time that the underlying mechanisms for astilbin delivered by NaDESs were revealed, suggesting that CHCL-LAC-based NaDESs are promising ready-to-use vehicles of natural inhibitors for carbohydrate-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Hongjuan Xia
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chenghao Lv
- College of Biological Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuting Lu
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chaoxi Zeng
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Meng Shi
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Chakraborty S, Sathe RY, Chormale JH, Dangi A, Bharatam PV, Bansal AK. Effect of Deep Eutectic System (DES) on Oral Bioavailability of Celecoxib: In Silico, In Vitro, and In Vivo Study. Pharmaceutics 2023; 15:2351. [PMID: 37765319 PMCID: PMC10534828 DOI: 10.3390/pharmaceutics15092351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Different deep eutectic systems (DES) of choline chloride (CC)-urea (UA) (1:2), CC-glycerol (GLY) (1:2), CC-malonic acid (MA) (1:1), and CC-ascorbic acid (AA) (2:1) were generated and characterized by polarized light microscope (PLM) and Fourier transform infrared spectroscope (FTIR). The equilibrium solubility of celecoxib (CLX) in DES was compared to that in deionized water. The CC-MA (1:1) system provided ~10,000 times improvement in the solubility of CLX (13,114.75 µg/g) and was used for the generation of the CLX-DES system. The latter was characterized by PLM and FTIR to study the microstructure and intermolecular interaction between the CLX and CC-MA (1:1) DES. FTIR demonstrated the retention of the chemical structure of CLX. In vitro drug release studies in FaSSIF initially demonstrated high supersaturation, which decreased by ~2 fold after 2 h. Density functional theory (DFT)-based calculations provided a molecular-level understanding of enhanced solubility. Gibbs free energy calculations established the role of the strongest binding of CLX with CC and MA. A phase solubility study highlighted the role of hydrotropy-induced solubilization of the CLX-DES system. Animal pharmacokinetic studies established 2.76 times improvement in Cmax, 1.52 times reduction in tmax, and 1.81 times improvement in AUC0-∞. The overall results demonstrated the potential of developing a DES-based supersaturating drug-delivery system for pharmaceutical loading of drugs having solubility and dissolution rate-limited oral bioavailability.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; (S.C.); (J.H.C.)
| | - Rohit Y. Sathe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; (R.Y.S.); (P.V.B.)
| | - Jaydeep H. Chormale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; (S.C.); (J.H.C.)
| | - Ashish Dangi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India;
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; (R.Y.S.); (P.V.B.)
| | - Arvind K. Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India; (S.C.); (J.H.C.)
| |
Collapse
|
14
|
Getie FA, Ayele DW, Habtu NG, Yihun FA, Yemata TA, Ambaw MD, Worku AK. Binary glycerol-based deep eutectic solvents containing zinc nitrate hexahydrate salt for rechargeable zinc air batteries applications with enhanced properties. Heliyon 2023; 9:e17810. [PMID: 37455983 PMCID: PMC10339017 DOI: 10.1016/j.heliyon.2023.e17810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Deep eutectic solvents (DESs) have attracted interest due to their unique and favorable electrochemical characteristics. This study reported a novel binary glycerol-zinc salt deep eutectic solvents were prepared with a combination of hydrogen bond donor (glycerol (Gly)) and hydrogen bond acceptor (Zinc nitrate hexahydrate (ZNH)) at different molar ratios of 1:2, 1:3, 1:4, 1:5, and 1:6. The various physicochemical properties including viscosity, refractivity index, conductivity, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance (EIS) were measured. The results showed that among the various combinations tested, DES 1:2 resulted in a low viscosity value of 690, 500, 310, 220, and 160 mPa (mPa s) at shear rate (S-1) values of 20, 30, 60, 100, and 200 respectively. Moreover, DES 1:2 resulted in more electrochemically stable solvents with a lower refractive index value of 1.446, and a higher conductivity (σ) of 4.41 mS/cm. The findings found disclose the features, nature and of properties of prepared DESs as a potential solvents for different electrochemical storage applications.
Collapse
Affiliation(s)
- Fentahun Adamu Getie
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
- Department of Chemistry, College of Natural and Computational Science, Injibara University, P.O. Box 40, Injibara, Ethiopia
| | - Delele Worku Ayele
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Nigus Gabbiye Habtu
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
- Faculty of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Fantahun Aklog Yihun
- Department of Industrial Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Temesgen Atnafu Yemata
- Faculty of Chemical Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| | - Mehary Dagnaw Ambaw
- Department of Industrial Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Ababay Ketema Worku
- Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia
| |
Collapse
|
15
|
Rodríguez-Llorente D, Martín-Gutiérrez D, Suárez-Rodríguez P, Navarro P, Álvarez-Torrellas S, García J, Larriba M. Sustainable recovery of phenolic antioxidants from real olive vegetation water with natural hydrophobic eutectic solvents and terpenoids. ENVIRONMENTAL RESEARCH 2023; 220:115207. [PMID: 36603659 DOI: 10.1016/j.envres.2022.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Olive oil production leads to the generation of olive mill wastewater (OMWW). Due to the presence of phenolic compounds, they are difficult to process, but they represent a source of high-added value chemicals since they have antioxidant and therapeutic properties. This work has studied the extraction of phenolic compounds from a type of OMWW, olive vegetation water, which presents these compounds in a more diluted dosage than in other studied to date, to revalue this waste stream. A real olive vegetation water from a Spanish olive oil producer was used, and liquid-liquid extraction was applied. Terpenoids and terpene-based hydrophobic eutectic solvents were systematically used to extract phenolic compounds following the concentrations of tyrosol, catechol, caffeic acid, and total phenolic content. By molecular simulation with the COSMO-RS method, 4 terpenoids, and 2 eutectic solvents were selected and compared with 2 conventional solvents. The Solvent/Feed ratio in the extraction of phenolic compounds was studied, showing that the solvents with the highest extraction results were geraniol, eucalyptol, and eutectic solvent menthol + camphor, which outperformed conventional solvents methyl isobutyl ketone and diisopropyl ether. Menthol + camphor gave total phenol extraction yields of 88.73% at a Solvent/Feed ratio in volume of 0.50, surpassing all solvents tested. A solvent reuse and regeneration process was applied by back-extraction of the 4 solvents: FTIR results showed the stability of the solvents while maintaining yields in the solvent reuse process. The phenolic compounds could be concentrated in the alkaline phase to factors up to 49.3 to the initial concentration in olive vegetation water. The alkaline phases were neutralized to obtain a precipitate with a caffeic acid content of up to 26 % wt%, and a tyrosol-rich supernatant with a concentration of up to 6.54 g/L. This work proposes a process using natural solvents to extract phenolic compounds from olive vegetation water.
Collapse
Affiliation(s)
- Diego Rodríguez-Llorente
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Diego Martín-Gutiérrez
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Pablo Suárez-Rodríguez
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Pablo Navarro
- Department of Chemical Engineering, Autonomous University of Madrid, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Silvia Álvarez-Torrellas
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Juan García
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Marcos Larriba
- Catalysis and Separation Processes Research Group (CyPS), Department of Chemical Engineering and Materials, Complutense University of Madrid, Avda. Complutense S/n, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Barakan S, Aghazadeh V. Rhenium extraction from pressure oxidative leaching solution of molybdenite concentrate using hydrophobic deep eutectic solvents. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
17
|
Hopkins TA, VandenElzen L, Nelson BP, Vaid V, Brickley J, Ariza P, Whitacre G, Patel I, Gooch O, Bechman M, Jordan C. Chiral Solvent Discovery: Exploring Chiral Eutectic Mixtures and Deep Eutectic Solvents. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Todd A. Hopkins
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Liam VandenElzen
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Brian P. Nelson
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Vishnu Vaid
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Jayme Brickley
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Paola Ariza
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Grace Whitacre
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Inaya Patel
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Olivia Gooch
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Mandy Bechman
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | - Charlotte Jordan
- Department of Chemistry, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| |
Collapse
|
18
|
Hydrophobic Deep Eutectic Solvents Based on Cineole and Organic Acids. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Zhang C, Fu Y, Gao W, Bai T, Cao T, Jin J, Xin B. Deep Eutectic Solvent-Mediated Electrocatalysts for Water Splitting. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228098. [PMID: 36432198 PMCID: PMC9694663 DOI: 10.3390/molecules27228098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As green, safe, and cheap solvents, deep eutectic solvents (DESs) provide tremendous opportunities to open up attractive perspectives for electrocatalysis. In this review, the achievement of DESs in the preparation of catalysts for electrolytic water splitting is described in detail according to their roles combined with our own work. DESs are generally employed as green media, templates, and electrolytes. A large number of hydrogen bonds in DESs result in supramolecular structures which have the ability to shape the morphologies of nanomaterials and then tune their performance. DESs can also serve as reactive reagents of metal electrocatalysts through directly participating in synthesis. Compared with conventional heteroatom sources, they have the advantages of high safety and designability. The "all-in-one" transformation strategy is expected to realize 100% atomic transformation of reactants. The aim of this review is to offer readers a deeper understanding on preparing DES-mediated electrocatalysts with higher performance for water splitting.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Yongqi Fu
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Wei Gao
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Te Bai
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Tianyi Cao
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Jianjiao Jin
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Bingwei Xin
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Correspondence: ; Tel.: +86-13685345517
| |
Collapse
|
20
|
Gutiérrez A, Rozas S, Hernando P, Alcalde R, Atilhan M, Aparicio S. A theoretical study of CO2 capture by highly hydrophobic type III deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Gao Y, Wu L, Zhou J, Ma X, Fang Y, Fang X, Dou Q. Hydrophobic deep eutectic solvent‐based ionic conductive gels with highly stretchable, fatigue‐resistant and adhesive performances for reliable flexible strain sensors. J Appl Polym Sci 2022. [DOI: 10.1002/app.53285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yifeng Gao
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Linlin Wu
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Jiacheng Zhou
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Xiaofeng Ma
- College of Science Nanjing Forestry University Nanjing People's Republic of China
| | - Ying Fang
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Xianli Fang
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| | - Qiang Dou
- College of Materials Science and Engineering Nanjing Tech University Nanjing People's Republic of China
| |
Collapse
|
22
|
Advances in the development of novel green liquids: thymol/water, thymol/urea and thymol/phenylacetic acid as innovative hydrophobic natural deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Mushtaq M, Butt FW, Akram S, Ashraf R, Ahmed D. Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges. Crit Rev Anal Chem 2022; 54:1634-1660. [PMID: 36148704 DOI: 10.1080/10408347.2022.2125284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Deep Eutectic Liquids (DELs) fall among the rapidly evolving discoveries of the 21st century, and these liquids are considered as alternative solvents to toxic and volatile organic liquids. Nevertheless, the emerging trend regarding the use of DELs in every field of physical and biological sciences, a lot of ambiguities and misconceptions exist about their formation, mechanism, and efficiencies observed or projected. A review of available technical data makes it obvious that these liquids have the potential to revolutionize the underdeveloped areas of analytical chemistry particularly the extraction/enrichment of analytes. To ensure the green and sustainable use of DELs, the researchers need to have a thorough understanding of DELs, their classification, chemistry, the nature and strength of molecular entanglements, and their tailorable features. Many researchers have declared these liquids recyclable but more attentive trials are needed to develop an authentic and straightforward DELs recycling methodology. The present review covers sound background knowledge and expert opinions about the technical definition of DELs, their classification, formation, recyclability, and tailorable features for their application as extraction solvent/sorbent in analytical chemistry.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
24
|
Micellization of conventional and gemini surfactants in aquoline: A case of exclusively water based deep eutectic solvent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
|
26
|
Malik A, Dhattarwal HS, Kashyap HK. An Overview of Structure and Dynamics Associated with Hydrophobic Deep Eutectic Solvents and Their Applications in Extraction Processes. Chemphyschem 2022; 23:e202200239. [PMID: 35702808 DOI: 10.1002/cphc.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Recent development of novel water-immiscible green solvents known as hydrophobic deep eutectic solvents (HDESs) has opened the gates for applications requiring media where presence of water is undesirable. Ever since they were prepared, researchers have used HDESs in diverse fields such as extraction processes, CO 2 sequestration, membrane formation, and catalysis. The microstructure and dynamics associated with the species comprising HDESs guide their suitability for specific applications. For example, varying the alkyl tail length of HDES components significantly affects the dynamics of the components and thus helps in tuning the efficiency of extraction processes. The development of HDESs is still in infancy and very few theoretical studies are available in the literature that help in understanding the structure and dynamics of HDESs. This review highlights the recent work focused on the microscopic structure and dynamics of HDESs and their potential applications, particularly in extraction processes. We have also provided a glimpse of how the integration of experiments and computational techniques can help understand the mechanism of extraction processes.
Collapse
Affiliation(s)
- Akshay Malik
- Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Harender S Dhattarwal
- IIT Delhi: Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Hemant Kumar Kashyap
- Indian Institute of Technology Delhi, Department of Chemistry, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, INDIA
| |
Collapse
|
27
|
Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
28
|
Shi D, Zhou F, Mu W, Ling C, Mu T, Yu G, Li R. Deep insights into the viscosity of deep eutectic solvents by an XGBoost-based model plus SHapley Additive exPlanation. Phys Chem Chem Phys 2022; 24:26029-26036. [DOI: 10.1039/d2cp03423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work proposes a data-driven model which could predict the viscosity of diverse DESs accurately and rapidly, and the model interpretation given by SHAP deepens the understanding of the viscosity of DESs.
Collapse
Affiliation(s)
- Dingyi Shi
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fengyi Zhou
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Wenbo Mu
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Cheng Ling
- China Overseas International Center, Advanced Micro Devices, Inc. (AMD), Beijing, 100101, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China
| | - Ruiqi Li
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|