1
|
Selva Sharma A, Ryou SM, Lee JH, Lee NY. New insights into the photophysical properties and interaction mechanisms of Janus green blue dye with polyanions and its applications in colorimetric visualization of loop-mediated isothermal amplification and polymerase chain reaction. J Mater Chem B 2024; 12:10082-10092. [PMID: 39268583 DOI: 10.1039/d4tb01623h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
In this investigation, the photophysical properties and interaction mechanisms of Janus green blue (JGB) dye with polyanions were systematically studied using spectroscopic techniques. The absorption spectral analysis revealed that JGB binds cooperatively to sodium alginate, leading to dye stacking along the polymer chain. The interaction of JGB dye with DNA was characterized by the emergence of a metachromatic peak at 564 nm, indicating the formation of dye aggregates. The analysis of absorption data reveals that JGB dye interacts with DNA at multiple binding sites, including at least one high-affinity site. The AutoDock Vina based blind docking approach was used to analyze the most probable binding location of JGB dye in DNA. By making use of the DNA-induced metachromasia, a colorimetric approach was developed for the visualization of loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). The LAMP-colorimetric assay, targeting the Streptococcus pneumoniae gene, demonstrated a noticeable colour change with a detection limit of 1 pg μL-1. The practical applicability was validated by detecting S. pneumoniae in artificial urine. In addition to LAMP, we tested the JGB dye based colorimetric assay for applicability in PCR reactions. The colorimetric PCR assay using the metal-responsive transcription factor (MTF-1) gene achieved a detection limit as low as 0.1 pg μL-1. The study highlights the potential of DNA binding metachromic dye to significantly enhance colorimetric assays, offering a robust and sensitive tool for molecular diagnostics.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Department of Nanoscience and Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Sung Min Ryou
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
| | - Ji Hyeok Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
| |
Collapse
|
2
|
Pascual G, Díaz SA, Roy SK, Meares A, Chiriboga M, Susumu K, Mathur D, Cunningham PD, Medintz IL, Yurke B, Knowlton WB, Melinger JS, Lee J. Towards tunable exciton delocalization in DNA Holliday junction-templated indodicarbocyanine 5 (Cy5) dye derivative heterodimers. NANOSCALE HORIZONS 2024. [PMID: 39320147 PMCID: PMC11423794 DOI: 10.1039/d4nh00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
We studied the exciton delocalization of indodicarbocyanine 5 dye derivative (Cy5-R) heterodimers templated by a DNA Holliday junction (HJ), which was quantified by the exciton hopping parameter Jm,n. These dyes were modified at the 5 and 5' positions of indole rings with substituent (R) H, Cl, tBu, Peg, and hexyloxy (Hex) groups that exhibit different bulkiness and electron-withdrawing/donating capacities. The substituents tune the physical properties of the dyes, such as hydrophobicity (log P) and solvent-accessible surface area (SASA). We tuned the Jm,n of heterodimers by attaching two Cy5-Rs in adjacent and transverse positions along the DNA-HJ. Adjacent heterodimers exhibited smaller Jm,n compared to transverse heterodimers, and some adjacent heterodimers displayed a mixture of H- and J-like aggregates. Most heterodimers exhibited Jm,n values within the ranges of the corresponding homodimers, but some heterodimers displayed synergistic exciton delocalization that resulted in larger Jm,n compared to their homodimers. We then investigated how chemically distinct Cy5-R conjugated to DNA can interact to create delocalized excitons. We determined that heterodimers involving Cy5-H and Cy5-Cl and a dye with larger substituents (bulky substituents and large SASA) such as Cy5-Peg, Cy5-Hex, and Cy5-tBu resulted in larger Jm,n. The combination provides steric hindrance that optimizes co-facial packing (bulky Cy5-R) with a smaller footprint (small SASA) that maximizes proximity. The results of this study lay a groundwork for rationally optimizing the exciton delocalization in dye aggregates for developing next-generation technologies based on optimized exciton transfer efficiency such as quantum information systems and biomedicine.
Collapse
Affiliation(s)
- Gissela Pascual
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, Washington, DC, Virginia 20375, USA.
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Adam Meares
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, Washington, DC, Virginia 20375, USA.
- College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, Washington, DC, Virginia 20375, USA.
- Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030, USA
| | - Kimihiro Susumu
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Paul D Cunningham
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, DC, Virginia 20375, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, Washington, DC, Virginia 20375, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, DC, Virginia 20375, USA.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA.
| |
Collapse
|
3
|
Li C, Chen J, Man T, Chen B, Li J, Li Q, Yang X, Wan Y, Fan C, Shen J. DNA Framework-Engineered Assembly of Cyanine Dyes for Structural Identification of Nucleic Acids. JACS AU 2024; 4:1125-1133. [PMID: 38559725 PMCID: PMC10976577 DOI: 10.1021/jacsau.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
DNA nanostructures serve as precise templates for organizing organic dyes, enabling the creation of programmable artificial photonic systems with efficient light-harvesting and energy transfer capabilities. However, regulating the organization of organic dyes on DNA frameworks remains a great challenge. In this study, we investigated the factors influencing the self-assembly behavior of cyanine dye K21 on DNA frameworks. We observed that K21 exhibited diverse assembly modes, including monomers, H-aggregates, J-aggregates, and excimers, when combined with DNA frameworks. By manipulating conditions such as the ion concentration, dye concentration, and structure of DNA frameworks, we successfully achieved precise control over the assembly modes of K21. Leveraging K21's microenvironment-sensitive fluorescence properties on DNA nanostructures, we successfully discriminated between the chirality and topology structures of physiologically relevant G-quadruplexes. This study provides valuable insights into the factors influencing the dynamic assembly behavior of organic dyes on DNA framework nanostructures, offering new perspectives for constructing functional supramolecular aggregates and identifying DNA secondary structures.
Collapse
Affiliation(s)
- Cong Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules and National
Center for Translational Medicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Jielin Chen
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules and National
Center for Translational Medicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Tiantian Man
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Bin Chen
- School
of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiang Li
- Institute
of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules and National
Center for Translational Medicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Xiurong Yang
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules and National
Center for Translational Medicine, Shanghai
Jiao Tong University, Shanghai 200240, China
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Ying Wan
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules and National
Center for Translational Medicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules and National
Center for Translational Medicine, Shanghai
Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Pascual G, Roy SK, Barcenas G, Wilson CK, Cervantes-Salguero K, Obukhova OM, Krivoshey AI, Terpetschnig EA, Tatarets AL, Li L, Yurke B, Knowlton WB, Mass OA, Pensack RD, Lee J. Effect of hydrophilicity-imparting substituents on exciton delocalization in squaraine dye aggregates covalently templated to DNA Holliday junctions. NANOSCALE 2024; 16:1206-1222. [PMID: 38113123 DOI: 10.1039/d3nr04499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Molecular aggregates exhibit emergent properties, including the collective sharing of electronic excitation energy known as exciton delocalization, that can be leveraged in applications such as quantum computing, optical information processing, and light harvesting. In a previous study, we found unexpectedly large excitonic interactions (quantified by the excitonic hopping parameter Jm,n) in DNA-templated aggregates of squaraine (SQ) dyes with hydrophilic-imparting sulfo and butylsulfo substituents. Here, we characterize DNA Holliday junction (DNA-HJ) templated aggregates of an expanded set of SQs and evaluate their optical properties in the context of structural heterogeneity. Specifically, we characterized the orientation of and Jm,n between dyes in dimer aggregates of non-chlorinated and chlorinated SQs. Three new chlorinated SQs that feature a varying number of butylsulfo substituents were synthesized and attached to a DNA-HJ via a covalent linker to form adjacent and transverse dimers. Various characteristics of the dye, including its hydrophilicity (in terms of log Po/w) and surface area, and of the substituents, including their local bulkiness and electron withdrawing capacity, were quantified computationally. The orientation of and Jm,n between the dyes were estimated using a model based on Kühn-Renger-May theory to fit the absorption and circular dichroism spectra. The results suggested that adjacent dimer aggregates of all the non-chlorinated and of the most hydrophilic chlorinated SQ dyes exhibit heterogeneity; that is, they form a mixture of dimers subpopulations. A key finding of this work is that dyes with a higher hydrophilicity (lower log Po/w) formed dimers with smaller Jm,n and large center-to-center dye distance (Rm,n). Also, the results revealed that the position of the dye in the DNA-HJ template, that is, adjacent or transverse, impacted Jm,n. Lastly, we found that Jm,n between symmetrically substituted dyes was reduced by increasing the local bulkiness of the substituent. This work provides insights into how to maintain strong excitonic coupling and identifies challenges associated with heterogeneity, which will help to improve control of these dye aggregates and move forward their potential application as quantum information systems.
Collapse
Affiliation(s)
- Gissela Pascual
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - German Barcenas
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Christopher K Wilson
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | | | - Olena M Obukhova
- State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Alexander I Krivoshey
- State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | | | - Anatoliy L Tatarets
- State Scientific Institution "Institute for Single Crystals" of the National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA.
| |
Collapse
|
5
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
6
|
Díaz SA, Pascual G, Patten LK, Roy SK, Meares A, Chiriboga M, Susumu K, Knowlton WB, Cunningham PD, Mathur D, Yurke B, Medintz IL, Lee J, Melinger JS. Towards control of excitonic coupling in DNA-templated Cy5 aggregates: the principal role of chemical substituent hydrophobicity and steric interactions. NANOSCALE 2023; 15:3284-3299. [PMID: 36723027 PMCID: PMC9932853 DOI: 10.1039/d2nr05544a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.
Collapse
Affiliation(s)
- Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Gissela Pascual
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Adam Meares
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
- Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
- Jacobs Corporation, Hanover, MD, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul D Cunningham
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA.
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA.
| |
Collapse
|
7
|
Chiriboga M, Green CM, Mathur D, Hastman DA, Melinger JS, Veneziano R, Medintz IL, Díaz SA. Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates. Methods Appl Fluoresc 2023; 11. [PMID: 36719011 PMCID: PMC10362908 DOI: 10.1088/2050-6120/acb2b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023]
Abstract
Coherently coupled pseudoisocyanine (PIC) dye aggregates have demonstrated the ability to delocalize electronic excitations and ultimately migrate excitons with much higher efficiency than similar designs where excitations are isolated to individual chromophores. Here, we report initial evidence of a new type of PIC aggregate, formed through heterogeneous nucleation on DNA oligonucleotides, displaying photophysical properties that differ significantly from previously reported aggregates. This new aggregate, which we call the super aggregate (SA) due to the need for elevated dye excess to form it, is clearly differentiated from previously reported aggregates by spectroscopic and biophysical characterization. In emission spectra, the SA exhibits peak narrowing and, in some cases, significant quantum yield variation, indicative of stronger coupling in cyanine dyes. The SA was further characterized with circular dichroism and atomic force microscopy observing unique features depending on the DNA substrate. Then by integrating an AlexaFluorTM647 (AF) dye as an energy transfer acceptor into the system, we observed mixed energy transfer characteristics using the different DNA. For example, SA formed with a rigid DNA double crossover tile (DX-tile) substrate resulted in AF emission sensitization. While SA formed with more flexible non-DX-tile DNA (i.e. duplex and single strand DNA) resulted in AF emission quenching. These combined characterizations strongly imply that DNA-based PIC aggregate properties can be controlled through simple modifications to the DNA substrate's sequence and geometry. Ultimately, we aim to inform rational design principles for future device prototyping. For example, one key conclusion of the study is that the high absorbance cross-section and efficient energy transfer observed with rigid substrates made for better photonic antennae, compared to flexible DNA substrates.
Collapse
Affiliation(s)
- Matthew Chiriboga
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America.,Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Joseph S Melinger
- Electronics Sciences and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Remi Veneziano
- Department of Bioengineering. College of Engineering and Computing, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States of America
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, 4555 Overlook Ave. S.W. Washington, DC 20375, United States of America
| |
Collapse
|
8
|
Wright N, Huff JS, Barclay MS, Wilson CK, Barcenas G, Duncan KM, Ketteridge M, Obukhova OM, Krivoshey AI, Tatarets AL, Terpetschnig EA, Dean JC, Knowlton WB, Yurke B, Li L, Mass OA, Davis PH, Lee J, Turner DB, Pensack RD. Intramolecular Charge Transfer and Ultrafast Nonradiative Decay in DNA-Tethered Asymmetric Nitro- and Dimethylamino-Substituted Squaraines. J Phys Chem A 2023; 127:1141-1157. [PMID: 36705555 PMCID: PMC9923757 DOI: 10.1021/acs.jpca.2c06442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular (dye) aggregates are a materials platform of interest in light harvesting, organic optoelectronics, and nanoscale computing, including quantum information science (QIS). Strong excitonic interactions between dyes are key to their use in QIS; critically, properties of the individual dyes govern the extent of these interactions. In this work, the electronic structure and excited-state dynamics of a series of indolenine-based squaraine dyes incorporating dimethylamino (electron donating) and/or nitro (electron withdrawing) substituents, so-called asymmetric dyes, were characterized. The dyes were covalently tethered to DNA Holliday junctions to suppress aggregation and permit characterization of their monomer photophysics. A combination of density functional theory and steady-state absorption spectroscopy shows that the difference static dipole moment (Δd) successively increases with the addition of these substituents while simultaneously maintaining a large transition dipole moment (μ). Steady-state fluorescence and time-resolved absorption and fluorescence spectroscopies uncover a significant nonradiative decay pathway in the asymmetrically substituted dyes that drastically reduces their excited-state lifetime (τ). This work indicates that Δd can indeed be increased by functionalizing dyes with electron donating and withdrawing substituents and that, in certain classes of dyes such as these asymmetric squaraines, strategies may be needed to ensure long τ, e.g., by rigidifying the π-conjugated network.
Collapse
Affiliation(s)
- Nicholas
D. Wright
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Jonathan S. Huff
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S. Barclay
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Katelyn M. Duncan
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Maia Ketteridge
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Olena M. Obukhova
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Alexander I. Krivoshey
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Anatoliy L. Tatarets
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | | | - Jacob C. Dean
- Department
of Physical Science, Southern Utah University, Cedar City, Utah 84720, United States
| | - William B. Knowlton
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Lan Li
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,Center
for
Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Olga A. Mass
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Paul H. Davis
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,Center
for
Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Jeunghoon Lee
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B. Turner
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Ryan D. Pensack
- †Micron
School of Materials Science & Engineering, ⊥Department of Electrical
& Computer Engineering, ○Department of Chemistry & Biochemistry, Boise State University, Boise, Idaho 83725, United States,
| |
Collapse
|
9
|
Basu S, Cervantes-Salguero K, Yurke B, Knowlton WB, Lee J, Mass OA. Photocrosslinking Probes Proximity of Thymine Modifiers Tethering Excitonically Coupled Dye Aggregates to DNA Holliday Junction. Molecules 2022; 27:4006. [PMID: 35807250 PMCID: PMC9268628 DOI: 10.3390/molecules27134006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
A DNA Holliday junction (HJ) has been used as a versatile scaffold to create a variety of covalently templated molecular dye aggregates exhibiting strong excitonic coupling. In these dye-DNA constructs, one way to attach dyes to DNA is to tether them via single long linkers to thymine modifiers incorporated in the core of the HJ. Here, using photoinduced [2 + 2] cycloaddition (photocrosslinking) between thymines, we investigated the relative positions of squaraine-labeled thymine modifiers in the core of the HJ, and whether the proximity of thymine modifiers correlated with the excitonic coupling strength in squaraine dimers. Photocrosslinking between squaraine-labeled thymine modifiers was carried out in two distinct types of configurations: adjacent dimer and transverse dimer. The outcomes of the reactions in terms of relative photocrosslinking yields were evaluated by denaturing polyacrylamide electrophoresis. We found that for photocrosslinking to occur at a high yield, a synergetic combination of three parameters was necessary: adjacent dimer configuration, strong attractive dye-dye interactions that led to excitonic coupling, and an A-T neighboring base pair. The insight into the proximity of dye-labeled thymines in adjacent and transverse configurations correlated with the strength of excitonic coupling in the corresponding dimers. To demonstrate a utility of photocrosslinking, we created a squaraine tetramer templated by a doubly crosslinked HJ with increased thermal stability. These findings provide guidance for the design of HJ-templated dye aggregates exhibiting strong excitonic coupling for exciton-based applications such as organic optoelectronics and quantum computing.
Collapse
Affiliation(s)
- Shibani Basu
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Keitel Cervantes-Salguero
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - William B. Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
| | - Olga A. Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| |
Collapse
|
10
|
Takada T, Shimobaki N, Naruo M, Nakamura M, Yamana K. Photoresponsive porphyrin‐DNA complexes constructed through intercalation‐like binding. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tadao Takada
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry 2167 Shosha 671-2280 Himeji, Hyogo JAPAN
| | - Nao Shimobaki
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Moe Naruo
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Mitsunobu Nakamura
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| | - Kazushige Yamana
- University of Hyogo: Hyogo Kenritsu Daigaku Department of applied chemistry JAPAN
| |
Collapse
|