1
|
Souri S, Timmer D, Lünemann DC, Hadilou N, Winte K, De Sio A, Esmann M, Curdt F, Winklhofer M, Anhäuser S, Guerrini M, Valencia AM, Cocchi C, Witte G, Lienau C. Ultrafast Time-Domain Spectroscopy Reveals Coherent Vibronic Couplings upon Electronic Excitation in Crystalline Organic Thin Films. J Phys Chem Lett 2024; 15:11170-11181. [PMID: 39480142 DOI: 10.1021/acs.jpclett.4c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The coherent coupling between electronic excitations and vibrational modes of molecules largely affects the optical and charge transport properties of organic semiconductors and molecular solids. To analyze these couplings by means of ultrafast spectroscopy, highly ordered crystalline films with large domains are particularly suitable because the domains can be addressed individually, hence allowing azimuthal polarization-resolved measurements. Impressive examples of this are highly ordered crystalline thin films of perfluoropentacene (PFP) molecules, which adopt different molecular orientations on different alkali halide substrates. Here, we report polarization-resolved time-domain vibrational spectroscopy with 10 fs time resolution and Raman spectroscopy of crystalline PFP thin films grown on NaF(100) and KCl(100) substrates. Coherent oscillations in the time-resolved spectra reveal vibronic coupling to a high-frequency, 25 fs, in-plane deformation mode that is insensitive to the optical polarization, while the coupling to a lower-frequency, 85 fs, out-of-plane ring bending mode depends significantly on the crystalline and molecular orientation. Comparison with calculated Raman spectra of isolated PFP molecules in vacuo supports this interpretation and indicates a dominant role of solid-state effects in the vibronic properties of these materials. Our results represent a first step toward uncovering the role of anisotropic vibronic couplings for singlet fission processes in crystalline molecular thin films.
Collapse
Affiliation(s)
- Somayeh Souri
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Daniel Timmer
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Daniel C Lünemann
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Naby Hadilou
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Katrin Winte
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Antonietta De Sio
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Martin Esmann
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Franziska Curdt
- Institut für Biologie, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Winklhofer
- Institut für Biologie, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Sebastian Anhäuser
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35032 Marburg, Germany
| | - Michele Guerrini
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Ana M Valencia
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Caterina Cocchi
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Gregor Witte
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35032 Marburg, Germany
| | - Christoph Lienau
- Institut für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
2
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Borrisov B, Beneventi GM, Fu Y, Qiu ZL, Komber H, Deng QS, Greißel PM, Cadranel A, Guldi DM, Ma J, Feng X. Deep-Saddle-Shaped Nanographene Induced by Four Heptagons: Efficient Synthesis and Properties. J Am Chem Soc 2024; 146:27335-27344. [PMID: 39329237 DOI: 10.1021/jacs.4c09224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The construction of multiple heptagonal rings in nanographene is the key step for obtaining exotic carbon nanostructures with a negative curvature and intriguing properties. Herein, a novel saddle-shaped nanographene (1) with four embedded heptagons is synthesized via a highly efficient one-shot Scholl reaction from a predesigned oligophenylene precursor. Notably, a quadruple [6]helicene intermediate was also obtained and isolated by controlling the Scholl reaction conditions. Interestingly, the single crystal structures of 1 display a saddle geometry induced by the four embedded heptagons, resulting in a deep curvature with a width of 16.5 Å and a depth of 8.0 Å. Theoretical calculations at the molecular level suggest a weak antiaromatic character of the heptagons in 1. Remarkably, compound 1 exhibits dual fluorescence from S1 and S2. The deep-saddle-shaped geometry in 1 defines host-guest interactions with fullerenes, which were explored in titration experiments and by theoretical methods. The resulting 1@C60 are stable and are subject to an electron transfer from photoexcited 1 to C60. Our current study underscores the influence of heptagon rings on the photophysical, self-assembly, and electron-donating properties of NGs.
Collapse
Affiliation(s)
- Boris Borrisov
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Giovanni M Beneventi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Qing-Song Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- CONICET - Universidad de Buenos Aires. Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ji Ma
- College of Materials Science and Optoelectronic Technology & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, 100049 Beijing, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
4
|
Pal Y, Fiala TA, Swords WB, Yoon TP, Schmidt JR. Predicting Emission Spectra of Heteroleptic Iridium Complexes Using Artificial Chemical Intelligence. Chemphyschem 2024; 25:e202400176. [PMID: 38752882 DOI: 10.1002/cphc.202400176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Indexed: 07/09/2024]
Abstract
We report a deep learning-based approach to accurately predict the emission spectra of phosphorescent heteroleptic [Ir(C ∧ N ${{\rm{C}}^\wedge {\rm{N}}}$ )2(N ∧ N ${{\rm{N}}^\wedge {\rm{N}}}$ )]+ complexes, enabling the rapid discovery of novel Ir(III) chromophores for diverse applications including organic light-emitting diodes and solar fuel cells. The deep learning models utilize graph neural networks and other chemical features in architectures that reflect the inherent structure of the heteroleptic complexes, composed ofC ∧ N ${{\rm{C}}^\wedge {\rm{N}}}$ andN ∧ N ${{\rm{N}}^\wedge {\rm{N}}}$ ligands, and are thus geared towards efficient training over the dataset. By leveraging experimental emission data, our models reliably predict the full emission spectra of these complexes across various emission profiles, surpassing the accuracy of conventional DFT and correlated wavefunction methods, while simultaneously achieving robustness to the presence of imperfect (noisy, low-quality) training spectra. We showcase the potential applications for these and related models for in silico prediction of complexes with tailored emission properties, as well as in "design of experiment" contexts to reduce the synthetic burden of high-throughput screening. In the latter case, we demonstrate that the models allow us to exploit a limited amount of experimental data to explore a wide range of chemical space, thus leveraging a modest synthetic effort.
Collapse
Affiliation(s)
- Yudhajit Pal
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Tahoe A Fiala
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - J R Schmidt
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| |
Collapse
|
5
|
Zhu HH, Sen Chen H, Chen T, Li Y, Luo SB, Karim MF, Luo XS, Gao F, Li Q, Cai H, Chin LK, Kwek LC, Nordén B, Zhang XD, Liu AQ. Large-scale photonic network with squeezed vacuum states for molecular vibronic spectroscopy. Nat Commun 2024; 15:6057. [PMID: 39025843 PMCID: PMC11258230 DOI: 10.1038/s41467-024-50060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Although molecular vibronic spectra generation is pivotal for chemical analysis, tackling such exponentially complex tasks on classical computers remains inefficient. Quantum simulation, though theoretically promising, faces technological challenges in experimentally extracting vibronic spectra for molecules with multiple modes. Here, we propose a nontrivial algorithm to generate the vibronic spectra using states with zero displacements (squeezed vacuum states) coupled to a linear optical network, offering ease of experimental implementation. We also fabricate an integrated quantum photonic microprocessor chip as a versatile simulation platform containing 16 modes of single-mode squeezed vacuum states and a fully programmable interferometer network. Molecular vibronic spectra of formic acid and thymine under the Condon approximation are simulated using the quantum microprocessor chip with high reconstructed fidelity ( > 92%). Furthermore, vibronic spectra of naphthalene, phenanthrene, and benzene under the non-Condon approximation are also experimentally simulated. Such demonstrations could pave the way for solving complicated quantum chemistry problems involving vibronic spectra and computational tasks beyond the reach of classical computers.
Collapse
Affiliation(s)
- Hui Hui Zhu
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, Singapore
| | - Hao Sen Chen
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, China
| | - Tian Chen
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, China.
| | - Yuan Li
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, Singapore
| | - Shao Bo Luo
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
| | - Muhammad Faeyz Karim
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, Singapore
| | | | - Feng Gao
- Advanced Micro Foundry, Singapore, Singapore
| | - Qiang Li
- Advanced Micro Foundry, Singapore, Singapore
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology, and Research), Singapore, Singapore
| | - Lip Ket Chin
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
| | - Leong Chuan Kwek
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, Singapore.
- Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore.
| | - Bengt Nordén
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Xiang Dong Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, China.
| | - Ai Qun Liu
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, Singapore.
- Institute of Quantum Technology (IQT), The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
6
|
Huang J, Ojambati OS, Climent C, Cuartero-Gonzalez A, Elliott E, Feist J, Fernández-Domínguez AI, Baumberg JJ. Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities. ACS NANO 2024; 18:14487-14495. [PMID: 38787356 PMCID: PMC11155255 DOI: 10.1021/acsnano.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation. Such pronounced enhancements transcend conventional dipolar mechanisms, underscoring the presence of alternative enhancement pathways. Notably, Fourier-plane scattering spectroscopy shows that the photoluminescence excitation resonance aligns with a higher-order plasmonic cavity mode, which supports strong field gradients. Combining quantum chemistry calculations with electromagnetic simulations reveals an important interplay between the Franck-Condon quadrupole and Herzberg-Teller dipole contributions in governing the absorption characteristics of this dark transition. In contrast to free space, the quadrupole moment plays a significant role in photoluminescence enhancement within nanoparticle-on-mirror cavities. These findings provide an approach to access optically inactive transitions, promising advancements in spectroscopy and sensing applications.
Collapse
Affiliation(s)
- Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Oluwafemi S. Ojambati
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Clàudia Climent
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvaro Cuartero-Gonzalez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
- Mechanical
Engineering Department, ICAI, Universidad
Pontificia Comillas, Madrid 28015, Spain
| | - Eoin Elliott
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Antonio I. Fernández-Domínguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid E-28049, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
7
|
Zhang ZT, Vaníček JJL. Finite-temperature vibronic spectra from the split-operator coherence thermofield dynamics. J Chem Phys 2024; 160:084103. [PMID: 38385512 DOI: 10.1063/5.0187823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
We present a numerically exact approach for evaluating vibrationally resolved electronic spectra at finite temperatures using the coherence thermofield dynamics. In this method, which avoids implementing an algorithm for solving the von Neumann equation for coherence, the thermal vibrational ensemble is first mapped to a pure-state wavepacket in an augmented space, and this wavepacket is then propagated by solving the standard, zero-temperature Schrödinger equation with the split-operator Fourier method. We show that the finite-temperature spectra obtained with the coherence thermofield dynamics in a Morse potential agree exactly with those computed by Boltzmann-averaging the spectra of individual vibrational levels. Because the split-operator thermofield dynamics on a full tensor-product grid is restricted to low-dimensional systems, we briefly discuss how the accessible dimensionality can be increased by various techniques developed for the zero-temperature split-operator Fourier method.
Collapse
Affiliation(s)
- Zhan Tong Zhang
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří J L Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Zhao J, Liu H, Fan J, Mu Q. A molecular descriptor of a shallow potential energy surface for the ground state to achieve narrowband thermally activated delayed fluorescence emission. Phys Chem Chem Phys 2024; 26:5156-5168. [PMID: 38260957 DOI: 10.1039/d3cp05875a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Narrowband thermally activated delayed fluorescence (TADF) molecules have extensive applications in optoelectronics, biomedicine, and energy. The full-width at half-maximum (FWHM) holds significant importance in assessing the luminescence efficiency and color purity of TADF molecules. The goal is to achieve efficient and stable TADF emissions by regulating and optimizing the FWHM. However, a bridge from the basic physical parameters (such as geometric structure and reorganization energy) to the macroscopic properties (delayed fluorescence, efficiency, and color purity) is needed and it is highly necessary and urgent to explore the internal mechanisms that influence FWHM. Herein, first-principles calculations coupled with the thermal vibration correlation function (TVCF) theory were performed to study the energy consumption processes of the excited states for the three TADF molecules (2,3-POA, 2,3-DPA, and 2,3-CZ) with different donors; inner physical parameters affecting the FWHM were detected. By analyzing the basic geometric and electronic structures as well as the transition properties and reorganization energies, three main findings in modulating FWHM were obtained, namely a large local excitation (LE) proportion in the first singlet excited state is advantageous in reducing FWHM, a donor group with weak electron-donating ability is beneficial for achieving narrowband emission, and small reorganization energies for the ground state are favorable for reducing FWHM. Thus, wise molecular design strategies to achieve efficient narrowband TADF emission are theoretically proven and proposed. We hope that these results will promote an in-depth understanding of FWHM and accelerate the development of high color purity TADF emitters.
Collapse
Affiliation(s)
- Jiaqiang Zhao
- School of Physics and Electronic Information, Weifang University, Weifang 261061, China.
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | - Qingfang Mu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
9
|
Albrecht CS, Scatena LF, von Hippel PH, Marcus AH. Two-photon excitation two-dimensional fluorescence spectroscopy (2PE-2DFS) of the fluorescent nucleobase 6-MI. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12863:1286305. [PMID: 39149416 PMCID: PMC11326479 DOI: 10.1117/12.3001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Base stacking is fundamentally important to the stability of double-stranded DNA. However, few experiments can directly probe the local conformations and conformational fluctuations of the DNA bases. Here we report a new spectroscopic approach to study the local conformations of DNA bases using the UV-absorbing fluorescent guanine analogue, 6-methyl isoxanthopterin (6-MI), which can be used as a site-specific probe to label DNA. In these experiments, we apply a two-photon excitation (2PE) approach to two-dimensional fluorescence spectroscopy (2DFS), which is a fluorescence-detected nonlinear Fourier transform spectroscopy. In 2DFS, a repeating sequence of four collinear laser pulses (with center wavelength ~ 675 nm and relative phases swept at radio frequencies) is used to excite the lowest energy electronic-vibrational (vibronic) transitions of 6-MI (with center wavelength ~ 340 nm). The ensuing low flux fluorescence is phase-synchronously detected at the level of individual photons and as a function of inter-pulse delay. The 2PE transition pathways that give rise to electronically excited state populations include optical coherences between electronic ground and excited states and non-resonant (one-photon-excited) virtual states. Our results indicate that 2PE-2DFS experiments can provide information about the electronic-vibrational spectrum of the 6-MI monomer, in addition to the conformation-dependent exciton coupling between adjacent 6-MI monomers within a (6-MI)2 dimer. In principle, this approach can be used to determine the local base-stacking conformations of (6-MI)2 dimer-substituted DNA constructs.
Collapse
Affiliation(s)
- Claire S Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Physics, University of Oregon, Eugene, Oregon 97403
| | - Lawrence F Scatena
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Peter H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
10
|
Wiethorn ZR, Hunter KE, Zuehlsdorff TJ, Montoya-Castillo A. Beyond the Condon limit: Condensed phase optical spectra from atomistic simulations. J Chem Phys 2023; 159:244114. [PMID: 38153146 DOI: 10.1063/5.0180405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
While dark transitions made bright by molecular motions determine the optoelectronic properties of many materials, simulating such non-Condon effects in condensed phase spectroscopy remains a fundamental challenge. We derive a Gaussian theory to predict and analyze condensed phase optical spectra beyond the Condon limit. Our theory introduces novel quantities that encode how nuclear motions modulate the energy gap and transition dipole of electronic transitions in the form of spectral densities. By formulating the theory through a statistical framework of thermal averages and fluctuations, we circumvent the limitations of widely used microscopically harmonic theories, allowing us to tackle systems with generally anharmonic atomistic interactions and non-Condon fluctuations of arbitrary strength. We show how to calculate these spectral densities using first-principles simulations, capturing realistic molecular interactions and incorporating finite-temperature, disorder, and dynamical effects. Our theory accurately predicts the spectra of systems known to exhibit strong non-Condon effects (phenolate in various solvents) and reveals distinct mechanisms for electronic peak splitting: timescale separation of modes that tune non-Condon effects and spectral interference from correlated energy gap and transition dipole fluctuations. We further introduce analysis tools to identify how intramolecular vibrations, solute-solvent interactions, and environmental polarization effects impact dark transitions. Moreover, we prove an upper bound on the strength of cross correlated energy gap and transition dipole fluctuations, thereby elucidating a simple condition that a system must follow for our theory to accurately predict its spectrum.
Collapse
Affiliation(s)
- Zachary R Wiethorn
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kye E Hunter
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
11
|
Hepguler A, Ulukan P, Catak S. The photophysical properties of sulfone-based TADF emitters in relation to their structural properties. Phys Chem Chem Phys 2023; 25:31457-31470. [PMID: 37962481 DOI: 10.1039/d3cp03557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In this work, thermally activated delayed fluorescence (TADF) of a series of emitters with sulfone-based acceptor moieties was studied by density functional theory (DFT) methods. Sulfone derivatives were shown to be high performing TADF emitters over recent years. When discussing the TADF efficiency, various properties, such as the singlet-triplet energy gap (ΔEST), spin-orbit coupling (SOC) and the nature of states, stand out due to their roles in reverse intersystem crossing (RISC). Here, we mainly focused on three important structural parameters that affect the intersystem crossing (ISC) and RISC pathways and their efficiencies. These three parameters are: (1) the effect of meta- and para-conjugation, (2) the effect of rigid acceptor moieties and (3) the effect of the phenyl bridge on photophysical properties.
Collapse
Affiliation(s)
- Aslıhan Hepguler
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| | - Pelin Ulukan
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| | - Saron Catak
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
12
|
Whaley-Mayda L, Guha A, Tokmakoff A. Multimode vibrational dynamics and orientational effects in fluorescence-encoded infrared spectroscopy. I. Response function theory. J Chem Phys 2023; 159:194201. [PMID: 37966137 DOI: 10.1063/5.0171939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Fluorescence-encoded infrared (FEIR) spectroscopy is an emerging technique for performing vibrational spectroscopy in solution with detection sensitivity down to single molecules. FEIR experiments use ultrashort pulses to excite a fluorescent molecule's vibrational and electronic transitions in a sequential, time-resolved manner, and are therefore sensitive to intervening vibrational dynamics on the ground state, vibronic coupling, and the relative orientation of vibrational and electronic transition dipole moments. This series of papers presents a theoretical treatment of FEIR spectroscopy that describes these phenomena and examines their manifestation in experimental data. This first paper develops a nonlinear response function description of Fourier-transform FEIR experiments for a two-level electronic system coupled to multiple vibrations, which is then applied to interpret experimental measurements in the second paper [L. Whaley-Mayda et al., J. Chem. Phys. 159, 194202 (2023)]. Vibrational coherence between pairs of modes produce oscillatory features that interfere with the vibrations' population response in a manner dependent on the relative signs of their respective Franck-Condon wavefunction overlaps, leading to time-dependent distortions in FEIR spectra. The orientational response of population and coherence contributions are analyzed and the ability of polarization-dependent experiments to extract relative transition dipole angles is discussed. Overall, this work presents a framework for understanding the full spectroscopic information content of FEIR measurements to aid data interpretation and inform optimal experimental design.
Collapse
Affiliation(s)
- Lukas Whaley-Mayda
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Abhirup Guha
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Kumar P, Pérez-Escribano M, van Raamsdonk DME, Escudero D. Phosphorescent Properties of Heteroleptic Ir(III) Complexes: Uncovering Their Emissive Species. J Phys Chem A 2023; 127:7241-7255. [PMID: 37597243 DOI: 10.1021/acs.jpca.3c04205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
In this contribution, we assess the computational machinery to calculate the phosphorescence properties of a large pool of heteroleptic [Ir(C^N)2(N^N)]+ complexes (where N^N is an ancillary ligand and C^N is a cyclometalating ligand) including their phosphorescent rates and their emission spectra. Efficient computational protocols are next proposed. Specifically, different flavors of DFT functionals were benchmarked against DLPNO-CCSD(T) for the phosphorescence energies. The transition density matrix and decomposition analysis of the emitting triplet excited state enable us to categorize the studied complexes into different cases, from predominant triplet ligand-centered (3LC) character to predominant charge-transfer (3CT) character, either of metal-to-ligand charge transfer (3MLCT), ligand-to-ligand charge transfer (3LLCT), or a combination of the two. We have also calculated the vibronically resolved phosphorescent spectra and rates. Ir(III) complexes with predominant 3CT character are characterized by less vibronically resolved bands as compared to those with predominant 3LC character. Furthermore, some of the complexes are characterized by close-lying triplet excited states so that the calculation of their phosphorescence properties poses additional challenges. In these scenarios, it is necessary to perform geometry optimizations of higher-lying triplet excited states (i.e., Tn). We demonstrate that in the latter scenarios all of the close-lying triplet species must be considered to recover the shape of the experimental emission spectra. The global analysis of computed emission energies, shape of the computed emission spectra, computed rates, etc. enable us to unambiguously pinpoint for the first time the triplet states involved in the emission process and to provide a general classification of Ir(III) complexes with regard to their phosphorescence properties.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | | | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
14
|
Manian A, Russo SP. The dominant nature of Herzberg-Teller terms in the photophysical description of naphthalene compared to anthracene and tetracene. Sci Rep 2022; 12:21481. [PMID: 36509819 PMCID: PMC9744826 DOI: 10.1038/s41598-022-24081-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
The first order and second order corrected photoluminescence quantum yields are computed and compared to experiment for naphthalene in this manuscript discussing negative results. Results for anthracene and tetracene are recalled from previous work (Manian et al. in J Chem Phys 155:054108, 2021), and the results for all three polyacenes are juxtaposed to each other. While at the Franck-Condon point, each of the three noted polyacenes were found to possess a quantum yield near unity. Following the consideration of Herzberg-Teller effects, quantum yields stabilised for anthracene and tetracene to 0.19 and 0.08, respectively. Conversely, the second order corrected quantum yield for naphthalene was found to be 0.91. Analysis of this result showed that while the predicted non-radiative pathways correlate well with what should be expected, the approximation used to calculate second order corrected fluorescence, which yielded very positive results for many other molecular systems, here is unable to account for strong second order contributions, resulting in a grossly overestimated rate of fluorescence. However, substitution of an experimental radiative rate results in a quantum yield of 0.33. This work extols the importance of Herzberg-Teller terms in photophysical descriptions of chromophores, and highlights those cases in which a treatment beyond the above approximation is required.
Collapse
Affiliation(s)
- Anjay Manian
- grid.1017.70000 0001 2163 3550ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000 Australia
| | - Salvy P. Russo
- grid.1017.70000 0001 2163 3550ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000 Australia
| |
Collapse
|
15
|
Roy P, Kundu S, Makri N, Fleming GR. Interference between Franck-Condon and Herzberg-Teller Terms in the Condensed-Phase Molecular Spectra of Metal-Based Tetrapyrrole Derivatives. J Phys Chem Lett 2022; 13:7413-7419. [PMID: 35929598 PMCID: PMC9393888 DOI: 10.1021/acs.jpclett.2c01963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The commonly used Franck-Condon (FC) approximation is inadequate for explaining the electronic spectra of compounds that possess vibrations with substantial Herzberg-Teller (HT) couplings. Metal-based tetrapyrrole derivatives, which are ubiquitous natural pigments, often exhibit prominent HT activity. In this paper, we compare the condensed phase spectra of zinc-tetraphenylporphyrin (ZnTPP) and zinc-phthalocyanine (ZnPc), which exhibit vastly different spectral features in spite of sharing a common tetrapyrrole backbone. The absorption and emission spectra of ZnTPP are characterized by a lack of mirror symmetry and nontrivial temperature dependence. In contrast, mirror symmetry is restored, and the nontrivial temperature-dependent features disappear in ZnPc. We attribute these differences to FC-HT interference, which is less pronounced in ZnPc because of a larger FC component in the dipole moment that leads to FC-dominated transitions. A single minimalistic FC-HT vibronic model reproduces all the experimental spectral features of these molecules. These observations suggest that FC-HT interference is highly susceptible to chemical modification.
Collapse
Affiliation(s)
- Partha
Pratim Roy
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| | - Sohang Kundu
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois
Quantum Information Science & Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Graham R. Fleming
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|