1
|
Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat Commun 2022; 13:538. [PMID: 35087039 PMCID: PMC8795156 DOI: 10.1038/s41467-022-28165-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches. We show that the extent of glycan-aromatic association increases sequentially across grasses, hardwoods, and softwoods. Lignin principally packs with the xylan in a non-flat conformation via non-covalent interactions and partially binds the junction of flat-ribbon xylan and cellulose surface as a secondary site. All molecules are homogeneously mixed in softwoods; this unique feature enables water retention even around the hydrophobic aromatics. These findings unveil the principles of polymer interactions underlying the heterogeneous architecture of lignocellulose, which may guide the rational design of more digestible plants and more efficient biomass-conversion pathways. The plant biomass is a composite formed by a variety of polysaccharides and an aromatic polymer named lignin. Here, the authors use solid-state NMR spectroscopy to unveil the carbohydrate-aromatic interface that leads to the variable architecture of lignocellulose biomaterials.
Collapse
|
2
|
Differences in protein structural regions that impact functional specificity in GT2 family β-glucan synthases. PLoS One 2019; 14:e0224442. [PMID: 31665152 PMCID: PMC6821405 DOI: 10.1371/journal.pone.0224442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Most cell wall and secreted β-glucans are synthesised by the CAZy Glycosyltransferase 2 family (www.cazy.org), with different members catalysing the formation of (1,4)-β-, (1,3)-β-, or both (1,4)- and (1,3)-β-glucosidic linkages. Given the distinct physicochemical properties of each of the resultant β-glucans (cellulose, curdlan, and mixed linkage glucan, respectively) are crucial to their biological and biotechnological functions, there is a desire to understand the molecular evolution of synthesis and how linkage specificity is determined. With structural studies hamstrung by the instability of these proteins to solubilisation, we have utilised in silico techniques and the crystal structure for a bacterial cellulose synthase to further understand how these enzymes have evolved distinct functions. Sequence and phylogenetic analyses were performed to determine amino acid conservation, both family-wide and within each sub-family. Further structural analysis centred on comparison of a bacterial curdlan synthase homology model with the bacterial cellulose synthase crystal structure, with molecular dynamics simulations performed with their respective β-glucan products bound in the trans-membrane channel. Key residues that differentially interact with the different β-glucan chains and have sub-family-specific conservation were found to reside at the entrance of the trans-membrane channel. The linkage-specific catalytic activity of these enzymes and hence the type of β-glucan chain built is thus likely determined by the different interactions between the proteins and the first few glucose residues in the channel, which in turn dictates the position of the acceptor glucose. The sequence-function relationships for the bacterial β-glucan synthases pave the way for extending this understanding to other kingdoms, such as plants.
Collapse
|
3
|
Yang H, McManus J, Oehme D, Singh A, Yingling YG, Tien M, Kubicki JD. Simulations of Cellulose Synthesis Initiation and Termination in Bacteria. J Phys Chem B 2019; 123:3699-3705. [PMID: 30983346 DOI: 10.1021/acs.jpcb.9b02433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The processivity of cellulose synthesis in bacterial cellulose synthase (CESA) was investigated using molecular dynamics simulations and the hybrid quantum mechanics and molecular mechanics approach. Our results suggested that cellulose synthesis in bacterial CESA can be initiated with H2O molecules. The chain length or degree of polymerization (DOP) of the product cellulose is related to the affinity of the cellulose chain to the transmembrane tunnel of the enzyme. This opens up the possibility of generating mutants that would produce cellulose chains with desired chain lengths that could have applications in the biofuel and textile fields that depend on the DOP of cellulose chains.
Collapse
Affiliation(s)
| | | | - Daniel Oehme
- Department of Geological Sciences , University of Texas at El Paso , El Paso , Texas , United States
| | - Abhishek Singh
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | | | - James D Kubicki
- Department of Geological Sciences , University of Texas at El Paso , El Paso , Texas , United States
| |
Collapse
|
4
|
Zimmer J. Structural features underlying recognition and translocation of extracellular polysaccharides. Interface Focus 2019; 9:20180060. [PMID: 30842868 DOI: 10.1098/rsfs.2018.0060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Essentially all living systems produce complex carbohydrates as an energy source, structural component, protective coat or adhesive for cell attachment. Many polysaccharides are displayed on the cell surface or are threaded through proteinaceous tunnels for degradation. Dictated by their chemical composition and mode of polymerization, the physical properties of complex carbohydrates differ substantially, from amphipathic water-insoluble polymers to highly hydrated hydrogel-forming macromolecules. Accordingly, diverse recognition and translocation mechanisms evolved to transport polysaccharides to their final destinations. This review will summarize and compare diverse polysaccharide transport mechanisms implicated in the biosynthesis and degradation of cell surface polymers in pro- and eukaryotes.
Collapse
Affiliation(s)
- Jochen Zimmer
- University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Kubicki JD, Yang H, Sawada D, O'Neill H, Oehme D, Cosgrove D. The Shape of Native Plant Cellulose Microfibrils. Sci Rep 2018; 8:13983. [PMID: 30228280 PMCID: PMC6143632 DOI: 10.1038/s41598-018-32211-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/21/2018] [Indexed: 11/26/2022] Open
Abstract
Determining the shape of plant cellulose microfibrils is critical for understanding plant cell wall molecular architecture and conversion of cellulose into biofuels. Only recently has it been determined that these cellulose microfibrils are composed of 18 cellulose chains rather than 36 polymers arranged in a diamond-shaped pattern. This study uses density functional theory calculations to model three possible habits for the 18-chain microfibril and compares the calculated energies, structures, 13C NMR chemical shifts and WAXS diffractograms of each to evaluate which shape is most probable. Each model is capable of reproducing experimentally-observed data to some extent, but based on relative theoretical energies and reasonable reproduction of all variables considered, a microfibril based on 5 layers in a 34443 arrangement is predicted to be the most probable. A habit based on a 234432 arrangement is slightly less favored, and a 6 × 3 arrangement is considered improbable.
Collapse
Affiliation(s)
- James D Kubicki
- Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA.
| | - Hui Yang
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daisuke Sawada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Hugh O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, USA
| | - Daniel Oehme
- Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Daniel Cosgrove
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro. Proc Natl Acad Sci U S A 2016; 113:11360-11365. [PMID: 27647898 DOI: 10.1073/pnas.1606210113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.
Collapse
|
7
|
Morgan JL, McNamara JT, Fischer M, Rich J, Chen HM, Withers SG, Zimmer J. Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 2016; 531:329-34. [PMID: 26958837 PMCID: PMC4843519 DOI: 10.1038/nature16966] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022]
Abstract
Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation.
Collapse
Affiliation(s)
- Jacob L.W. Morgan
- University of Virginia School of Medicine, Center for Membrane Biology, Molecular Physiology and Biological Physics, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Joshua T. McNamara
- University of Virginia School of Medicine, Center for Membrane Biology, Molecular Physiology and Biological Physics, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Michael Fischer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1
| | - Jamie Rich
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1
| | - Hong-Ming Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., Canada V6T 1Z1
| | - Jochen Zimmer
- University of Virginia School of Medicine, Center for Membrane Biology, Molecular Physiology and Biological Physics, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Knott BC, Crowley MF, Himmel ME, Zimmer J, Beckham GT. Simulations of cellulose translocation in the bacterial cellulose synthase suggest a regulatory mechanism for the dimeric structure of cellulose. Chem Sci 2016; 7:3108-3116. [PMID: 27143998 PMCID: PMC4849487 DOI: 10.1039/c5sc04558d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In addition to suggesting a mechanism for regulating cellulose structure, molecular simulations indicate translocation is not rate-limiting for cellulose biosynthesis.
The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations to the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol–1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme–polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called ‘finger helix’ in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive cycle and may be widely relevant to polysaccharide synthesizing or degrading enzymes that couple catalysis with chain translocation.
Collapse
Affiliation(s)
- Brandon C Knott
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden CO 80401, USA
| | - Michael F Crowley
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden CO 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden CO 80401, USA
| | - Jochen Zimmer
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22980
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden CO 80401, USA
| |
Collapse
|